ОБОСНОВАНИЕ ПАРАМЕТРОВ ПРЕОБРАЗОВАТЕЛЯ ПОСТОЯННОГО ТОКА ДЛЯ ИСТОЧНИКА АВТОНОМНОГО ЭЛЕКТРОСНАБЖЕНИЯ
DOI:
https://doi.org/10.14529/power200410Ключевые слова:
ИМПУЛЬСНЫЙ ИСТОЧНИК ПИТАНИЯ, ТОПОЛОГИЯ ПРЕОБРАЗОВАТЕЛЯ, ПОВЫШАЮЩИЙ-ПОНИЖАЮЩИЙ ПРЕОБРАЗОВАТЕЛЬ, БАЛАНС ВОЛЬТ-СЕКУНД, БАЛАНС ЗАРЯДА КОНДЕНСАТОРА, SEPICАннотация
С внедрением концепции Smart Grid в развитие электроэнергетики нарастает интерес к использованию DC/DC-преобразователей для координированной работы на одну систему шин постоянного тока разнотипных источников питания, имеющих в своем составе источники возобновляемой энергии, накопители электроэнергии (аккумуляторные батареи, модули суперконденсаторов), различную нагрузку. В статье выполнен анализ DC/DC-преобразователей для систем автономного электроснабжения. Обосновано применение преобразователя типа SEPIC (Single Ended Primary Inductance Converter). Представлена методика определения параметров преобразователя. Продемонстрирована и обоснована регулировка активного периода коэффициента заполнения в соответствии с теоретическим поведением после изменения входного напряжения выше и ниже желаемого выходного значения. Выполнено моделирование работы преобразователя в режимах повышения, понижения и стабилизации выходного напряжения в пакете MATLAB / Simulink. Полученные результаты моделирования показывают эффективность предлагаемого решения для источника автономного электроснабжения.
Скачивания
Библиографические ссылки
Зотин О.Т. В преддверии возрождения постоянного тока. Силовая электроника. 2013. Т. 6, № 45.
С. 7–14. [Zotin O.T. In anticipation of DC revival. Power electronics, 2013, vol. 6, no. 45, pp. 7–14. (in Russ.)]
Denardo A., Femia N., Forrisi F., Granato M. SEPIC converter passive components design. 2008 IEEE
th Electronics, Circuits and Systems (ICECS 2008), 2008, pp. 1002–1005. DOI: 10.1109/icecs.2008.4675025
Mitchell D.M. ACDC converter having an improved power factor. Patent U.S., no. 4 412 277, 1983.
Laszlo H., Yungtaek J., Jovanovic M.M. Performance Evaluation of Bridgeless PFC Boost Rectifiers. IEEE
Transactions on Power Electronics, 2008, vol. 23, no. 3, pp. 1381–1390. DOI: 10.1109/tpel.2008.921107
Tollik D., Pietkiewicz A. Comparative analysis of l-phase active power factor correction topologies. Proc.
Int. Telecommunication Energy Conf., 1992, pp. 517–523. DOI: 10.1109/intlec.1992.268393
Souza A.F., Barbi I. High power factor rectifier with reduced conduction and commutation losses. Proc.
Int. Telecommunication Energy Conf., 1999, pp. 8.1.1–8.1.5. DOI: 10.1109/intlec.1999.794044
Пирог С., Шклярский Я.Э., Скамьин А.Н. Идентификация местоположения нелинейной электрической
нагрузки. Записки Горного института. 2019. Т. 237. С. 317–321. [Pirog S, Shklyarskiy Y.E., Skamyin A.N.
Non-linear Electrical Load Location Identification. Journal of Mining Institute, 2019, vol. 237, pp. 317–322.]
DOI: 10.31897/pmi.2019.3.317
Salmon J.C. Circuit topologies for PWM boost rectifiers operated from 1-phase and 3-phase ac supplies
and using either single or split dc rail voltage. Proc. IEEE Applied Power Electronics Conf., 1995, pp. 473–479.
DOI: 10.1109/apec.1995.468990
Woo-Young Choi et al. Bridgeless Boost Rectifier with Low Conduction Losses and Reduced Diode Reverse-Recovery Problems. IEEE Transactions on Industrial Electronics, 2007, vol. 54, no. 2, pp. 769–780. DOI:
1109/tie.2007.891991
Enjeti P.N., Martinez R. A high performance single phase AC to DC rectifier with input power factor correction. Proc. IEEE Appl. Power Electron. Conf., 1993, pp. 190–195. DOI: 10.1109/apec.1993.290631
Souza A.F., Barbi I. A new ZVS semiresonant high power factor rectifier with reduced conduction losses.
IEEE Trans. Ind. Electron., 1999, vol. 46, no. 1, pp. 82–90. DOI: 10.1109/41.744393
Moriconi U. A bridgeless PFC configuration based on L4981 PFC controller. Application Note AN 1606,
, pp. 1–18.
Wang C.M. A novel zero-voltage switching PWM boost rectifier with high power factor and low conduction losses. Proc. INTELEC., 2003, pp. 224–229.
Moschopoulos G., Jain P. A novel single-phase soft-switched rectifier with unity power factor and minimal
component count. IEEE Trans. Ind. Electron., 2004, vol. 51, no. 3, pp. 566–576. DOI: 10.1109/tie.2004.825334
Ern T., Frisch M. Second generation of PFC solutions. Power Electron. Europe, 2004, no. 7, pp. 33–35.
Salmon J.C. Circuit topologies for single-phase voltage-doubler boost rectifiers. Proc. IEEE Appl. Power
Electron. Conf., 1992, pp. 549–556. DOI: 10.1109/apec.1992.228362
Lykov Y.V., Gorelikov V.G., Baatarkhuu G. Analytical research and classification of mechanism of diamond drilling-bits contact with rocks during well sinking. 2017 IOP Conf. Ser.: Earth Environ. Sci. 87 022012,
Available at: https://iopscience.iop.org/article/10.1088/1755-1315/87/2/022012 (accessed 15.02.2020). DOI:
1088/1755-1315/87/2/022012
Ye H. et al. Common mode noise modeling and analysis of dual boost PFC circuit. Proc. Int.
Telecommun. Energy Conf., 2004, pp. 575–582.
Lu B., Brown R., Soldano M. Bridgeless PFC implementation using one cycle control technique. Proc.
IEEE Appl. Power Electron. Conf., 2005, pp. 812–817. DOI: 10.1109/apec.2005.1453073
Kong P., Wang S., Lee F.C. Common mode EMI noise suppression in bridgeless boost PFC converter.
Proc. CPES Power Electron. Conf., 2006, pp. 65–70.
Wei H., Batarseh I. Comparison of basic converter topologies for power factor correction. Proceedings
IEEE Southeastcon '98 'Engineering for a New Era', Orlando, FL, USA. 1998, pp. 348–353.
Gorelikov V.G., Lykov Y.V., Baatarkhuu G. Analytical and Experimental Study of the Mechanisms of
Diamond Bits Interaction with Rocks in the Wellbore During Sinking Processes. International Journal of Applied
Engineering Research, 2016, vol. 11, no. 10, pp. 7012–7016. Available at: http://www.ripublication.com (accessed
02.2020).
Wang C.M. A novel single-stage high-power-factor electronic ballast with symmetrical half-bridge topology. IEEE Trans. Ind. Electron., 2008, vol. 55, no. 2, pp. 969–972. DOI: 10.1109/tie.2007.896556
Ismail E.H. Bridgeless SEPIC Rectifier with Unity Power Factor and Reduced Conduction Losses. IEEE
Transactions on Industrial Electronics, 2009, vol. 56, no. 4, pp. 1147–1157. DOI: 10.1109/tie.2008.2007552
Singh K., Singh M. Analysis and Comparison of Performance of Various DC-DC Converters using
MATLAB SIMULINK. International Journal for Scientific Research & Development, 2015, vol. 3, iss. 08.
Sahid M.R., Yatim A.H.M., Taufik T. A new AC-DC converter using bridgeless SEPIC. IECON 2010 –
th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010, pp. 286–290. DOI:
1109/iecon.2010.5675012
Sebastian J. Improving power factor correction in distributed power supply systems using PWM
and ZCS-QR SEPIC topologies. Proc. IEEE Power Electron. Spec. Conf., 1991, pp. 780–791. DOI:
1109/pesc.1991.162764
Cuk S., Brkovic M. Input current shaper using Cuk converter. Proc. Int. Telecommun. Energy Conf.,
, pp. 532–539. DOI: 10.1109/intlec.1992.268391
Simonetti D.S.L., Sebastian J., Uceda J. The discontinuous conduction mode Sepic and CUK power factor
preregulators: Analysis and design. IEEE Trans. Ind. Electron., 1997, vol. 44, no. 5, pp. 630–637. DOI:
1109/41.633459
Spiazzi G., Rosseto L. High-quality rectifier based on coupled-inductor Sepic topology. Proc. IEEE Appl.
Power Electron. Conf., 1994, pp. 336–341. DOI: 10.1109/pesc.1994.349712
Dos Reis F.S., Sebastian J., Uceda J. Characterization of conducted noise generation for Sepic CUK and
Boost converters working as power factor preregulators. Proc. IEEE IECON ‘93, 1993, vol. 2, pp. 965–970. DOI:
1109/iecon.1993.339144
Guerra Dand Iakovleva E 2019 E3S Web Conf. 140 4013.
Zhang H., Yi C., Wei T. Nonlinear Modal Analysis of Transient Interaction Behaviors in SEPIC DC-DC
Converters. IET Power Electron., 2017, vol. 10, iss. 10, pp. 1190–1199. DOI: 10.1049/iet-pel.2016.0858
Li N. et al. Digital control strategies for DC/DC SEPIC converters towards integration. INSA de Lyon,
English. Available at: https://tel.archives-ouvertes.fr/tel-00760064 (accessed 10.02.2020).
Anuradha C., Sakthivel C., Venkatesan T., Chellammal N. Analysis of Non-Isolated Multi-Port Single
Ended Primary Inductor Converter for Standalone Applications. Energies, 2018, vol. 11 (3), p. 539. DOI:
3390/en11030539
Rose J.L., Sankaragomathi B. Design, Modeling, Analysis and Simulation of a SEPIC Converter.
Middle-East Journal of Scientific Research, 2016, vol. 24 (7), pp. 2302–2308. Available at:
https://www.idosi.org/mejsr/mejsr24(7)16/20.pdf (accessed 27.02.2020).
Erickson R.W., Maksimovic D. Fundamentals of Power Electronics. 2001, Boston, MA: Springer US.
p.
Zhang D. Revised 2013 AN-1484 Designing A SEPIC Converter (Rev. E). Available at:
https://www.ti.com/lit/an/snva168e/snva168e.pdf (accessed 27.02.2020).
Mohan N., Undeland T.M., Robbins W.P. Power Electronics. Converters, Applications, and Design.
Hoboken, N.J., John Wiley & Sons, 1995. 667 p.
Al Sakka M., Van Mierlo J., Gualous H. DC/DC Converters for Electric Vehicles, Electric Vehicles.
Modelling and Simulations, Seref Soylu, IntechOpen, 2011. DOI: 10.5772/17048. Available at:
https://www.intechopen.com/books/electric-vehicles-modelling-and-simulations/dc-dc-converters-for-electricvehicles (accessed 27.02.2020).
SEPIC Equations and Component Ratings [Electronic Resource]. Maxim Integrated: Technical Document.
Available at: https://pdfserv.maximintegrated.com/en/an/AN1051.pdf (accessed 01.03.2020).