ВИХРЕВАЯ НЕУСТОЙЧИВОСТЬ В РЕАГИРУЮЩЕМ ПОТОКЕ В ТАНГЕНЦИАЛЬНОМ ГОРЕЛОЧНОМ УСТРОЙСТВЕ

Авторы

  • И.В. Литвинов Институт теплофизики им. С.С. Кутателадзе СО РАН, г. Новосибирск
  • А.В. Назаров Институт теплофизики им. С.С. Кутателадзе СО РАН, г. Новосибирск

DOI:

https://doi.org/10.14529/power160102

Ключевые слова:

обедненное горение, прецессия вихревого ядра (ПВЯ), лазерно-допплеровский анемометр (ЛДА), ульспации скорости

Аннотация

Приведен анализ осредненных распределений скорости, измеренных с помощью лазернодопплеровского анемометра, на выходе из тангенциального горелочного устройства в реагирующем потоке при различных расходах пропан-воздушной смеси (коэффициент стехиометрии, φ = 0,4). Показано,
что частота прецессирующего вихревого ядра в реагирующем потоке не является линейной функцией
расхода смеси, как в случае изотермических условий. Предложены возможные причины влияния на частоту прецессии вихря условий реагирующего потока – увеличение размера вихревого ядра за счет заполнения продуктами реакции.
Ключевые слова: обедненное горение, прецессия вихревого ядра (ПВЯ), лазерно-допплеровский анемометр (ЛДА), ульспации скорости.

Скачивания

Данные скачивания пока недоступны.

Библиографические ссылки

Гупта А., Лилли Д., Сайред Н. Закрученные потоки: пер. с англ. М.: Мир, 1987. 588 с. [Gupta A.K., Lilley D.G., Syred N. Swirl Flows. England, Abacus Press, 1984.]

M. Freitag, M. Klein, M. Gregor, D. Geyer, C. Schneider, A. Dreizler, et al., Mixing Analysis of a Swirling Recirculating Flow Using DNS and Experimental Data, Int. J. Heat Fluid Flow. 27 (2006) 636–643. DOI: 10.1016/j.ijheatfluidflow.2006.02.020

D. Galley, S. Ducruix, F. Lacas, D. Veynante, Mixing and Stabilization Study of a Partially Premixed Swirling Flame Using Laser Induced Fluorescence, Combust. Flame. 158 (2011) 155–171. DOI: 10.1016/j.combustflame.2010.08.004

M. Stöhr, C.M. Arndt, W. Meier, Transient Effects of Fuel-Air Mixing in a Partially-Premixed Turbulent Swirl Flame, Proc. Combust. Inst. 35 (2015) 3327–3335. DOI: 10.1016/j.proci.2014.06.095

P.M. Anacleto, E.C. Fernandes, M.V. Heitor, S.I. Shtork, Swirl Flow Structure and Flame Characteristics in a Model Lean Premixed Combustor, Combust. Sci. Technol. 175 (2003) 1369–1388.

A.M. Steinberg, I. Boxx, M. Stöhr, C.D. Carter, W. Meier, Flow-Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a ThermoAcoustically Unstable Gas Turbine Model Combustor,

Combust. Flame. 157 (2010) 2250–2266. DOI: 10.1016/j.combustflame.2010.07.011

R.C. Chanaud, Observations of Oscillatory Motion in Certain Swirling Flows, J Fluid Mech. 21

(1965) 111–127. DOI: 10.1017/S0022112065000083

J.J. Cassidy, H.T. Falvey, Observations of Unsteady Flow Arising after Vortex Breakdown, J Fluid Mech. 41 (1969) 727–736.

S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, S.I. Shtork, Helical Vortices in Swirl Flow, J. Fluid Mech.

(1999) 195–243. DOI: 10.1017/S0022112098003772

Алексеенко С.В., Куйбин П.А., Окулов В.Л. Введение в теорию концентрированных вихрей.

Новосибирск: Ин-т теплофизики СО РАН, 2003. [Alekseenko S.V., Kuibin P.A., Okulov V.L. Vvedenie

v teoriju koncentrirovannyh vihrej (Theory of Concentrated Vortices: an Introduction). Novosibirsk, Institute of Thermophysics SB RAS, 2003.]

N. Syred, A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems, Prog. Energy Combust. Sci. 32 (2006) 93–161. DOI: 10.1016/j.pecs.2005.10.002

I.V. Litvinov, S.I. Shtork, P.A. Kuibin, S.V. Alekseenko, K. Hanjalic, Experimental Study and Analytical Reconstruction of Precessing Vortex in a Tangential Swirler, Int. J. Heat Fluid Flow. 42 (2013) т251–264. DOI: 10.1016/j.ijheatfluidflow.2013.02.009

Литвинов И.В., Шторк С.И., Алексеенко С.В. Экспериментальное исследование сильнозакрученного течения в тангенциальном завихрителе. Вестник КузГТУ. 2012. С. 129–135. [Litvinov I.V., Shtork S.I., Alekseenko S.V. (Experimental Study of Strongly Swirling Flow in a Tangential Swirler Device). Vestnik KuzGTU (The Bulletin of KuzSTU), 2012, pp. 129–135. (in Russ.)]

S.I. Shtork, C.E. Cala, E.C. Fernandes, Experimental Characterization of Rotating Flow Field in a Model Vortex Burner, Exp. Therm. Fluid Sci. 31 (2007) 779–788. DOI: 10.1016/j.expthermflusci.2006.08.008

N.R. Lomb, Least-Squares Frequency Analysis of Unequally Spaced Data, Astrophys. Space Sci.

(1976) 447–462. DOI: 10.1007/BF00648343.

A.P. Vinokurov, S.I. Shtork, S.V. Alekseenko, The Influence of the Dispersed Gaseous Phase on

Characteristics of Vortex Precession in a Swirling Gas-Liquid Flow, Tech. Phys. Lett. 41 (2015) 844–

DOI: 10.1134/S1063785015090114

Загрузки

Опубликован

01/14/2016

Как цитировать

[1]
Литвинов, И. и Назаров, А. 2016. ВИХРЕВАЯ НЕУСТОЙЧИВОСТЬ В РЕАГИРУЮЩЕМ ПОТОКЕ В ТАНГЕНЦИАЛЬНОМ ГОРЕЛОЧНОМ УСТРОЙСТВЕ. Вестник Южно-Уральского государственного Университета. Серия: «Энергетика». 16, 1 (янв. 2016), 5–12. DOI:https://doi.org/10.14529/power160102.