МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПЛАНИРОВАНИЯ РЕЖИМОВ ЭЭС В РЫНОЧНЫХ УСЛОВИЯХ НА СРЕДНЕСРОЧНУЮ ПЕРСПЕКТИВУ
DOI:
https://doi.org/10.14529/power240102Ключевые слова:
электроэнергетический рынок, математическая модель, условия оптимальности, несовершенная конкуренция, равновесное состояние, узловые ценыАннотация
В статье представлена математическая модель планирования состояний электроэнергетической системы в среднесрочном периоде с учетом правил, действующих на рынках электроэнергии России. Необходимость такой модели обусловлена потребностью планирования электроэнергетических режимов с учётом интересов потребителей, включающих их надежное электроснабжение при минимизации затрат на покупку электроэнергии. При планировании режимов необходимо принимать во внимание возможные действия поставщиков, стремящихся максимизировать собственную прибыль при узловой ценообразовании на рынках. В представленной модели период планирования разбит на несколько временных интервалов, задача решается с учётом балансовых ограничений в узлах ЭЭС, ограничений по допустимым значениям генерации, перетоков и объемов энергоресурсов. Рыночное равновесие моделируется одновременно в нескольких интервалах с учётом многократности и длительности взаимодействия. Рассмотрены подходы поиска равновесного состояния в многоинтервальной задаче. Приводятся результаты численного моделирования на примере упрощенной схемы реальной ЭЭС.
Скачивания
Библиографические ссылки
Правила оперативно-диспетчерского управления в электроэнергетике. Постановление Правительст ва РФ от 27.12.2004 г. N 854. URL: https://energoworld.ru/library/pravila-operativno-dispetcherskogoupravleniyav-elektroenergetike/ (дата обращения: 20.05.2023).
Joskow P.L. Lessons learned from electricity market liberalization // The Energy Journal. 2008. Vol. 29 (Special issue no. 2). P. 9–42. DOI: 10.5547/ISSN0195-6574-EJ-Vol29-NoSI2-3
Регламент проведения конкурентного отбора ценовых заявок на сутки вперед. Приложение № 7
к Договору о присоединении к торговой системе оптового рынка. НП «Совет рынка». URL: https://www.
np-sr.ru/sites/default/files/sr_regulation/reglaments/r7_01012020_22042019.pdf (дата обращения: 22.03.2023).
Айзенберг Н.И., Дзюба С.А. Проявление рыночной власти на российском рынке электроэнергии //
Всероссийский экономический журнал ЭКО. 2020. № 10 (556). С. 102–126. DOI: 10.30680/ЕСО0131-7652-
-10-102-126
Стофт С. Экономика энергосистем. Введение в проектирование рынков электроэнергии: пер. с англ. М.: Мир, 2005. 623 c.
Shable G. Demand Is Very Elastic! // IEEE Power and Energy Magazine. 2011. Vol. 9, no. 2. P. 14–20. DOI: 10.1109/MPE.2011.940264
Application of Ramsey model in transition economy: a Russian case study / B. Nahata, A. Izyumov, V. Busygin, A. Mishura // Energy Economics. 2007. Vol. 29, no. 1. P. 105–125. DOI: 10.1016/j.eneco.2005.09.011
Sharma K.C., Bhakar R., Tiwari H.P. Stochastic EPEC approach for wind power trading in competitive electricity market // 2014 Eighteenth National Power Systems Conference (NPSC). Guwahati, India, 2014. P. 1–6. DOI: 10.1109/NPSC.2014.7103830
Day C.J., Hobbs B.F., Pang J.S. Oligopolistic competition in power networks: a conjectured supply function approach // IEEE Transactions on Power Systems. 2002. Vol. 17, no. 3. P. 597–607. DOI: 10.1109/TPWRS.2002.800900
Electricity market modeling trends / M. Ventosa, A. Baıllo, A. Ramos, M. Rivier // Energy Policy. 2005. Vol. 33, no. 7. P. 897–913. DOI: 10.1016/j.enpol.2003.10.013
Newbery D.M., Greve T. The strategic robustness of oligopoly electricity market models // Energy Eco-nomics. 2017. Vol. 68. P. 124–132. DOI: 10.1016/j.eneco.2017.09.020
A supply function model for representing the strategic bidding of the producers in constrained electricity markets / E. Bompard, W. Lu, R. Napoli, X. Jiang // International Journal of Electrical Power & Energy Systems. 2010. Vol. 32 (6). P. 678–687. DOI: 10.1016/j.ijepes.2010.01.001
Hobbs B.F., Metzler C.B., Pang J.-S. Strategic gaming analysis for electric power systems: An MPEC approach // IEEE Transactions on Power Systems. 2000. Vol. 15, no. 2. p. 638–645. DOI: 10.1109/59.867153
Айзенберг Н.И., Паламарчук. С.И. Среднесрочное планирование режимов электроэнергетических систем в условиях оптового рынка электроэнергии // Известия Российской академии наук. Энергетика. 2020. № 6. P. 17–30. DOI: 10.31857/S0002331020050039
Zangwill W.I. Nonlinear programming: a unified approach. Englewood Cliffs, NJ: Prentice-Hall, 1969.
Luo Z.Q., Pang J.S., Ralph D. Mathematical Programs with Equilibrium Constraints. Cambridge: Cam-bridge University Press, 1996.
Jin S., Ryan S.M. A tri-level model of centralized transmission and decentralized generation expansion planning for an electricity market – Part I // IEEE Transactions on Power Systems. 2013. Vol. 29, no. 1. P. 132–141. DOI: 10.1109/TPWRS.2013.2280085
An MPEC reformulation of an EPEC model for electricity market / L. Guo, G.H. Lin, D. Zhang, D. Zhu // Operations Research Letters. 2015. Vol. 43, no. 3. P. 262–267. DOI: 10.1016/j.orl.2015.03.001
Gaming strategy for electric power with random demand / P. Couchman, B. Kouvaritakis, M. Cannon, F. Prashad // IEEE Transactions on Power Systems. 2005. Vol. 20, no. 3. P. 1283–1292. DOI: 10.1109/TPWRS.2005.851954
Mitridati L., Pinson P. Optimal coupling of heat and electricity systems: A stochastic hierarchical ap-proach // 2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). Beijing, China, 2016 P. 1–6. DOI: 10.1109/PMAPS.2016.7764188
Baldick R., Grant R., Kahn E. Theory and Application of Linear Supply Function Equilibrium in Electrici-ty Markets // Journal of Regulatory Economics. 2004. Vol. 25, no. 2. P. 143–167. DOI: 10.1023/B:REGE.0000012287.80449.97
Holmberg P., Newbery D. The supply function equilibrium and its policy implications for wholesale elec-tricity auctions // Utilities Policy. 2010. Vol. 18, no. 4. P. 209–226.