ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЭНЕРГОТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ НА БАЗЕ ТЕПЛОВОГО НАСОСА. ЧАСТЬ 2. ИСПАРИТЕЛЬНАЯ УСТАНОВКА

Авторы

  • К.В. Осинцев Южно-Уральский государственный университет
  • О.Ю. Корнякова Южно-Уральский государственный университет
  • Я.С. Болков Южно-Уральский государственный университет
  • В.О. Кончаков Южно-Уральский государственный университет
  • А.М. Карелин Южно-Уральский государственный университет

DOI:

https://doi.org/10.14529/power240308

Ключевые слова:

тепловой насос, эксергетические потери, испарительные установки

Аннотация

Разработана схема работы и конструкция опреснительной установки в составе энерготехнологического комплекса, включающего тепловой насос, фотоэлектрическую панель. Проведен анализ литературных источников на тему возобновляемых источников энергии в составе энергокомплексов. Представлена методика определения эксергетических потерь потоков воды и пара. Испарительная установка получает подогретую воду из теплового насоса, который подробно рассмотрен в первой части исследования. Показаны варианты вскипания воды под атмосферным давлением и под разряжением. Однако, принцип работы опреснительной установки не меняется, поэтому разработанная методология подходит для любых типов термического и вакуумного испарения воды. Полученный дистиллят охлаждается и может использоваться в технологических нуждах промышленных предприятий или сельского хозяйства.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

К.В. Осинцев, Южно-Уральский государственный университет

канд. техн. наук, доц., заведующий кафедрой промышленной теплоэнергетики

О.Ю. Корнякова, Южно-Уральский государственный университет

преподаватель кафедры промышленной теплоэнергетики

Я.С. Болков, Южно-Уральский государственный университет

преподаватель кафедры промышленной теплоэнергетики

В.О. Кончаков, Южно-Уральский государственный университет

студент кафедры промышленной теплоэнергетики

А.М. Карелин, Южно-Уральский государственный университет

студент кафедры промышленной теплоэнергетики

Библиографические ссылки

Perekopnaya Y.A., Osintsev K.V., Toropov E.V. Principles of Energy Conversion in Thermal Transformer Based on Renewable Energy Sources. In: Radionov A., Karandaev A. (eds) Advances in Automation. RusAutoCon 2019. Lecture Notes in Electrical Engineering, vol 641. Springer, Cham. 2020. DOI: 10.1007/978-3-030-39225-3_45

Osintsev K., Aliukov S. ORC technology based on advanced Li-Br absorption refrigerator with solar collectors and a contact heat exchanger for greenhouse gas capture. Sustainability. 2022,14(9):5520. DOI: 10.3390/su14095520

Shishkov A.N., Osintsev K.V. Modernization of technological equipment in the waste water purification process behind the coke oven using the organic Rankine cycle. IOP Conference Series Materials Science and Engineering. 2021;1064(1):012032. DOI: 10.1088/1757-899X/1064/1/012032

Mirmanto M., Mulyanto A., Lestari D.D. Effect of the number of turns of a coil evaporator on water pro-duction. IOSR Journal of Mechanical and Civil Engineering. 2023;19(4):31–35. DOI: 10.9790/1684-1904023135

Mirmanto M., Nurchayati N. Performance of Air-Water Harvester Machine for Cooling Drinking Water. IOSR Journal of Mechanical and Civil Engineering. 2022;19:1–6. DOI: 10.9790/1684-1902020106

Mirmanto M., Syahrul S., Wijayanta A.T., Mulyanto A., Winata L.A. Effect of evaporator numbers on water production of a free convection air-water harvester. Case Studies in Thermal Engineering. 2021;27:101253. DOI: 10.1016/j.csite.2021.101253

Siricharoenpanich A., Wiriyasart S., Prurapark R., Naphon P. Effect of cooling water loop on the thermal performance of air conditioning system. Case Studies in Thermal Engineering. 2019;15:100518. DOI: 10.1016/j.csite.2019.100518

Wu X.P., Johnson P., Akbarzadeh A. Application of heat pipe heat exchangers to humidity control in air conditioning systems. Appl. Therm. Eng. 1997;17:561–568.

Khedari L., Permchart W., Pratinthong N., Hirunlabh J. Field study using the ground as heat sink for the condensing unit of an air conditioner in Thailand. Energy. 2001;26:797–810.

Martinez F.J.R. Design and experimental study of a mixed energy recovery system, heat, heat pipes and indirect evaporative equipment for air conditioning system. Build. 2003;35:1021–1030.

Yau Y.H. Experimental thermal performance study of an inclined heat pipe heat exchanger operating in high humid tropical HVAC systems. Int. J. Refrig. 2007;30:1143–1152.

Yau Y.H. Application of a heat pipe heat exchanger to dehumidification enhancement in tropical HVAC systems – a baseline performance characteristics study. Int. J. Therm. Sci. 2007;46:164–171.

Yau Y.H. The use of a double heat pipe heat exchanger system for reducing energy consumption of trea-ting ventilation air in an operating theatre – a full year energy consumption model simulation. Energy Build. 2008;40:917–925.

Wan J.W., Zhang J.L., Zhang W.M. The effect of heat-pipe air-handling coil on energy consumption in central air-conditioning system. Energy Build. 2007;39:1035–1040.

Abd El-Baky M.A., Mohamed M.M. Heat pipe heat exchanger for heat recovery in air conditioning. Appl. Therm. Eng. 2007;27:795–801.

Alklaibi A.M. Evaluating the possible configurations of incorporating the loop heat pipe into the air-conditioning systems. Int. J. Refrig. 2008;31:807–815.

Naphon P. On the performance of air conditioner with heat pipe for cooling air in the condenser. Energy Convers. Manag. 2010;51:2362–2366.

Mirmanto M., Wirawan M., Sayoga I.M.A., Syahrul S., Faisal M., Abdullah A. Effect of absorber types of conventional distillers on the amount of distilled water production. Front. in Heat and Mass Trans. 2019;13:1–7. DOI: 10.5098/hmt.13.10

Gugulothu R., Somanchi N.S., Reddy K.V.K., Gantha D. A review on solar water distillation using sensible and latent heat. Procedia Earth and Planetary Science. 2015;11:354–360. DOI: 10.1016/j.proeps.2015.06.072

Panchal H., Patel P., Patel N., Thakkar H. Performance analysis of solar still with different energy absor-bing materials. Int. J. Ambient Energy. 2015;38:224–228. DOI: 10.1080/01430750.2015.1086683

Panchal H.N. Life cycle cost analysis of a double-effect solar still. Int. J. Ambient Energy. 2016;38:395–399. DOI: 10.1080/01430750.2015.1132767

Mohan I., Yadav S., Panchal H., Brahmbhatt S. A Review on solar still: a simple desalination technology to obtain potable water. Int. J. Ambient Energy. 2017;40:335–342. DOI: 10.1080/01430750.2017.1393776

Mevada D., Panchal H., Bastawissi H.A.E., Elkelawy M., Sadashivuni K., Ponnamma D., Thakar N., Sharshir S.W. Applications of evacuated tubes collector to harness the solar energy: a review. Int. J. Ambient Energy. 2019;43(1):344–361. DOI:10.1080/01430750.2019.1636886

Panchal H., Hishan S.S., Rahim R., Sadasivuni K.K. Solar still with evacuated tubes and calcium stones to enhance theyield: an experimental investigation. Process Saf. Environ. Protect. 2020;142:150–155. DOI: 10.1016/j.psep.2020.06.023

Harb O.M., Salem M.Sh, Abd EL-Hay G.H., Makled KhM. Fog water harvesting providing stability for small bedwe communities lives on the north coast of Egypt. Ann. Agric. Sci. 2016;61:105–110. DOI: 10.1016/j.aoas.2016.01.001

Слесаренко В.Н. Опреснительные установки ДВГМА. Владивосток, 1999. 244 с. [Slesarenko V.N. Desalination plants. Vladivostok; 1999. 244 p. (In Russ.)].

Загрузки

Опубликован

09/30/2024

Как цитировать

[1]
Осинцев, К., Корнякова, О., Болков, Я., Кончаков, В. и Карелин, А. 2024. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЭНЕРГОТЕХНОЛОГИЧЕСКОГО КОМПЛЕКСА ОПРЕСНЕНИЯ МОРСКОЙ ВОДЫ НА БАЗЕ ТЕПЛОВОГО НАСОСА. ЧАСТЬ 2. ИСПАРИТЕЛЬНАЯ УСТАНОВКА. Вестник Южно-Уральского государственного Университета. Серия: «Энергетика». 24, 3 (сен. 2024), 73–80. DOI:https://doi.org/10.14529/power240308.

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>