OPTIMIZATION OF ELECTRIC DRIVES OF INDUSTRIAL MECHANISMS

Authors

  • D.Yu. Khriukin South Ural State University, Chelyabinsk, Russia
  • E.M. Tulegenov South Ural State University, Chelyabinsk, Russia
  • K.D. Semenova South Ural State University, Chelyabinsk, Russia
  • V.A. Kushnarev South Ural State University, Chelyabinsk, Russia
  • D.A. Sychev South Ural State University, Chelyabinsk, Russia

DOI:

https://doi.org/10.14529/power220406

Keywords:

finite element method, current circuit electric drive, electric drive mathematical model, synchronous reluctance motor

Abstract

This article discusses optimization problems in the design of an AC electric drive kit with a capacity of up to 1 MW. The need for optimization in the design of the electric drive is due to the technical and economic indicators of the long-term operation of the electric drive. The main problem of optimizing the AC electric drive is the complexity of the mathematical description of the frequency converter electric motor. A generalized mathematical model of AC electric drives is presented, in which the nonlinear part of the frequency converter is represented by an aperiodic link with a time constant Ti, a pure delay link with a time constant  and a switching function Ψni, which are approximating a semiconductor converter for the transfer function. Such a mathematical model makes it possible to synthesize power circuits and an i-beam converter control system. The optimization of an electromechanical converter using the finite
element method is considered.



Downloads

Download data is not yet available.

References

Magureanu R., Vasile N. Magnetic field and steady-state parameters of flux barrier reluctance synchro-nous motors // Revue roumaine de sciences techniques. Serie electrotechnique et energetique. 1979. Vol. 24, no. 3. P. 465–477.

Lipo T.A. Performance calculations of a reluctance motor drive by dq harmonic balance // IEEE Trans Ind Appl. 1979. Vol. IA-15, no. 1. P. 25–35. DOI: 10.1109/TIA.1979.4503609

Du Z.S., Lipo T.A. Design of an improved dual-stator ferrite magnet vernier machine to replace an industri-al rare-earth ipm machine // IEEE Trans Energy Convers. 2019. Vol. 34, no. 4. P. 2062–2069. DOI: 10.1109/TEC.2019.2931496

Modular stator flux and torque control of multi-three-phase induction motor drives / S. Rubino, I.R. Bojoi, F. Mandrile, E. Armando // IEEE Trans Ind Appl. 2020. Vol. 56, no. 6. P. 6507–6525. DOI: 10.1109/TIA.2020.3022338

Synchronous reluctance machine geometry optimisation through a genetic algorithm based technique / M. Ruba, F. Jurca, L. Czumbil et al. // IET Electr Power Appl. 2018. Vol. 12, no. 3. P. 431–438. DOI: 10.1049/iet-epa.2017.0455

Salazar L.D., Ziogas P.D. A single-ended SMR converter topology with optimized switching characteristics // IEEE Trans Power Electron [Internet]. 1989. Vol. 4, no. 1. P. 53–63. DOI: 10.1109/63.21872

Wang X., Palka R., Wardach M. Nonlinear digital simulation models of switched reluctance motor drive // Energies. 2020. Vol. 13, no. 24. P. 6715. DOI: 10.3390/en13246715

Григорьев М.А. Синхронный реактивный электропривод с независимым управлением по каналу возбуждения и предельными характеристиками по быстродействию и перегрузочным способностям: спе-циальность 05.09.03 «Электротехнические комплексы и системы»: дис. … д-ра техн. наук. Челябинск, 2013. 325 с.

Усынин Ю. С., Григорьев М. А. Тепловая модель электрической машины прокатного стана // Элек-тротехника. 2022. № 2. С. 12–16. DOI: 10.53891/00135860_2022_2_12

Белоусов Е.В., Григорьев М.А., Хрюкин Д.Ю. Электропривод системы верхнего привода буровой установки // Электротехника. 2022. № 2. С. 17–21. DOI: 10.53891/00135860_2022_2_17

Published

2022-12-28

How to Cite

[1]
Khriukin, D., Tulegenov, E., Semenova, K., Kushnarev, V. and Sychev, D. 2022. OPTIMIZATION OF ELECTRIC DRIVES OF INDUSTRIAL MECHANISMS. Bulletin of the South Ural State University series "Power Engineering". 22, 4 (Dec. 2022), 53–59. DOI:https://doi.org/10.14529/power220406.

Most read articles by the same author(s)

1 2 > >>