MATHEMATICAL MODEL OF INDUCTION MOTOR WITH SERIES-CONNECTED STATOR AND ROTOR WINDINGS

Authors

  • T.A. Funk South Ural State University
  • Yu.S. Usynin South Ural State University
  • A.I. Grebnev South Ural State University
  • D.A. Ponosov South Ural State University

DOI:

https://doi.org/10.14529/power170111

Keywords:

industrial mechanisms, electric drive, asynchronous motor, phase rotor, impulse-vector control system, sensorless control, mathematical model.

Abstract

To provide for the cost-effective use of resources and energy conservation it is vital to enhance unregulated
electric drives of copious working mechanisms. The technical process of these mechanisms requires relatively
longstanding speed reduction under low static loads. Moreover, another relevant issue is choosing control systems
of electric drives in the mentioned systems in accordance with the economic and maintenance aspects. The authors
suggest using the systems of impulse-vector control system with wound rotor induction motor that have one essential drawback – the shaft encoder installation. The replacement of the shaft encoder with sensorless impulse-vector
control system is complicated due to the lack of proper mathematical description of the electromagnetic processes
in schemes with non-traditional windings stator and rotor connection . To solve this problem the authors have developed a mathematical description of impulse-vector control system with wound rotor induction motor supposed
to be multiphase and asymmetrical. Angular dependencies of inductances, flux linkages, voltages of engine windings, circuit current and electromagnetic torque relatively to rotor location are derived. In addition to that, the mathematical modeling and research of induction motor configuration with a series connected windings fed by AC
voltage source are presented. Equating rotor position in impulse-vector control system with wound rotor induction
motor is considered possible through angular dependencies of drop voltages on stator and rotor windings

Downloads

Download data is not yet available.

References

Лезнов, Б.С. Энергосбережение и регулируемый привод в насосных и воздуходувных установках /Б.С. Лезнов. – М.: Энергопромиздат, 2006. – 359 с.

Сарваров, А.С. Энергосберегающий электропривод на осное НПЧ-АД с программным формированием напряжения / А.С. Сарваров. – Магнитогорск: МГТУ, 2001. – 206 с.

Барац, Е.И. Регулятор напряжения с переменной структурой для системы скалярного управления преобразователем частоты / Е.И. Барац, И.Я. Браславский // Электроприводы переменного тока: тр. XII науч.-техн. конф. – Екатеринбург: УГТУ, 2001. – С. 117–120.

A comprehensive review on energy efficiency enhancement initiatives in centrifugal pumping system / Vishnu Kalaiselvan Arun Shankara, Subramaniam Umashankara, Shanmugam Paramasivamb, Norbert Hanigovszkic // Applied Energy. – 2016. – No. 181. – P. 495–513.

Миронов, Л.М. Обоснование областей применения непосредственных преобразователей частоты /Л.М. Миронов; под ред. С.В. Хватова // Труды III Международной (XIV Всероссийской) конференции по автоматизированному электроприводу АЭП 2001 (Нижний Новгород, 12–14 сентября 2001). – Нижний Новгород: Вектор-ТиС, 2001. – С. 222.

Circuits of a pulse-vector controlling alternate current motor drive / A.V. Valov, T.A. Funk, A.M. Zhuravlev, N.Y. Sidorenko // Russian electrical engineering. – 2014. – No. 85 (10). – P. 613–615. DOI:10.3103/S1068371214100150

Indirect determination of the displacement in an electric motor drive / T.A. Funk, N.M. Saprunova, E.V. Belousov, A.M. Zhuravlev // Russian electrical engineering. – 2015. – No. 86 (12). – P. 716–718. DOI: 10.3103/S106837121512007X

Holtz, J. Sensorless control of induction motor drives / J. Holtz // Proceedings of the IEEE. – 2002. – No. 90 (8). – P. 1359–1394. DOI: 10.1109/JPROC.2002.800726

A control reconfiguration strategy for post-sensor FTC in induction motor-based EVs / B. Tabbache, N. Rizoug, M.E.H. Benbouzid, A. Kheloui // IEEE Transactions on Vehicular Technology. – 2013. – No. 62 (3). –P. 965–971. DOI: 10.1109/TVT.2012.2232325

Pal, A. Sensorless speed control of induction motor driven electric vehicle using model reference adaptive controller / A. Pal, R. Kumar, S. Das // Energy Procedia. – 2015. – No. 90. – P. 540–551. DOI: 10.1016/j.egypro.2016.11.222

Dominic, D.A. Analysis of field-oriented controlled induction motor drives under sensor faults and an overview of sensorless schemes / A. Dominic, T.R. Chelliah // ISA Transactions. – 2015. – No. 53 (5). – P. 1680–1694. DOI: 10.1016/j.isatra.2014.04.008

Traoré, D. Adaptive interconnected observer-based backstepping control design for sensorless induction motor / D. Traoré, De J. Leon, A. Glumineau // Automatica. – No. 48 (4). – 2012. – P. 682–687. DOI:10.1016/j.automatica. 2012.01.018

Pulse-vector control with indirect determination of rotor angular position / Yu.S. Usynin, Yu.S. Smirnov,T.A. Kozina, A.V. Valov // Russian electrical engineering. – 2013. – No. 84 (10). – P. 566–571. DOI:10.3103/S1068371213100106

Usynin, Yu.S. Asynchronous electric drive with pulse-vector control / Yu.S. Usynin, A.V. Valov, T.A. Kozina // Russian electrical engineering. – 2011. – Vol. 82 (3). – P. 134–137. DOI: 10.3103/S1068371211030102.

Вольдек, А.И. Электрические машины / А.И. Вольдек. – Л.: Энергия, 1974. – 840 c.

Важнов, А.И. Переходные процессы в машинах переменного тока / А.И. Важнов. – Л.: Энергия. Ленингр. отд-ние, 1986. – 256 с.

Андреев, В.П. Основы электропривода / В.П. Андреев, Ю.А. Сабинин. – М.: Госэнергоиздат, 1963. –772 с.

Алексеев, Ю.В. Крановое электрооборудование: справ. / Ю.В. Алексеев, А.П. Богословский, Е.М.Певзнер. – М.: Энергия, 1979. – 240 с

Published

2017-03-31

How to Cite

[1]
Funk, T., Usynin, Y., Grebnev, A. and Ponosov, D. 2017. MATHEMATICAL MODEL OF INDUCTION MOTOR WITH SERIES-CONNECTED STATOR AND ROTOR WINDINGS. Bulletin of the South Ural State University series "Power Engineering". 17, 1 (Mar. 2017), 77–87. DOI:https://doi.org/10.14529/power170111.