EVALUATING THE CONCENTRATION OF NITROGEN OXIDES AT THE MODEL GAS TURBINE COMBUSTION CHAMBER OUTLET

Authors

  • Ю.А. КАГРАМАНОВ ООО «ПЛМ Урал»
  • В.Г. ТУПОНОГОВ Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
  • А.Ф. РЫЖКОВ Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
  • У.В. ЖИЖИНА Уральский федеральный университет имени первого Президента России Б.Н. Ельцина
  • В.В. НАЗАРОВА Уральский федеральный университет имени первого Президента России Б.Н. Ельцина

DOI:

https://doi.org/10.14529/power200302

Keywords:

GAS TURBINE, NITROGEN OXIDES

Abstract

The study applies a new technique for evaluating the NOx concentration when burning syngas in the gas turbine combustion chamber. The technique allows correlating the complete detailed mechanism of the Grimech 3.0 array of parallel reactions with the computer hydrodynamics equations (motion, heat and mass transfer, turbulence, and molecular diffusion equations for an ideal gas flow). Selectivity diagrams of the NOx formation process including eleven key reactions are built based on the specific reaction rates for lean and rich fuel mixtures. Verification calculations have been performed based on a model gas turbine combustion chamber within a fuel-air equivalence ratio of 0.5-2. The new technique has been applied for determining the NOx emissions and the maximum temperature of the industrial combustion chamber fire tube wall. The GE gas composition showed the best NOx emission result. The most problematic is Polk Power and Texaco syngas (oxygen process). When burning LCV gases in the primary air suction area, a recirculation zone is observed; due to the high heat release in this area, the maximum wall temperature is about 500 °С.

Downloads

Download data is not yet available.

References

Giuffrida A., Romano M.C. Lozza G. Thermodynamic Analysis of Air-Blown Gasification for IGCC Applications. Applied Energy, 2011, vol. 88, pp. 3949–3958. DOI: 10.1016/j.apenergy.2011.04.009

Ryzhkov A. Technological solutions for an advanced IGCC plant. Fuel, 2018, vol. 214, pp. 63–72. DOI:

1016/j.fuel.2017.10.099

Stopper U. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames. Experimental Thermal and Fluid Science, 2010, vol. 34, pp. 396–403. DOI:

1016/j.expthermflusci.2009.10.012

Xia Y. Simulating Flame Response to Acoustic Excitation for an Industrial Gas Turbine Combustor.

th International Congress on Sound and Vibration, 23–27 July, 2017, London.

Fedina E. Assessment of Finite Rate Chemistry Large Eddy Simulation Combustion Models. Flow Turbul.

Combust, 2017, vol. 99. DOI: 10.1007/s10494-017-9823-0

Bulat G. NO and CO formation in an industrial gas-turbine combustion chamber using LES with

the Eulerian sub-grid PDF method. Combustion and Flame, 2014. DOI: 10.1016/j.combustflame.2013.12.028

Eun-Seong Cho. Numerical Evaluation of NOx Mechanisms in Methane-Air Counter Flow Premixed Flames.

Journal of Mechanical Science and Technology, 2009, vol. 23, pp. 659–666. DOI: 10.1007/s12206-008-1222-y

Bose D., Candlert G.V. Kinetics of the N2 + O  NO + N Reaction Under Thermodynamic Nonequilibrium. Journal of thermophysics and heat transfer, 1996, vol. 10, no. 1, p. 148. DOI: 10.2514/3.765

Waldman C.H., Wilson R.P., Jr., and K.L Maloney. Kinetic Mechanism of methane/air combustion with

pollutant formation. EPA-650/2-74-045, June 1994, pp. 23–24.

Grimech 3.0. Available at: http://combustion.berkeley.edu/gri-mech/version30/text30.html (accessed

06.2020).

Park J., Hershberger J.F. Kinetics and product branching ratios of the CN + NO2 reaction. The Journal of

Chemical Physics, 1993, vol. 99, 3488. DOI: 10.1063/1.466171

Webinar Recording: ANSYS Chemkin Pro and Energico. Reaction Design Product Overview. Available

at: https://www.youtube.com/watch?v=ee_uY5cHG2U&t=1293s (accessed 01.06.2020).

Hasegawa T. Gas Turbine Combustion Technology Reducing Both Fuel-NOx and Thermal-NOx Emissions for Oxygen-Blown IGCC WithHot/Dry Synthetic Gas Cleanup. Journal of Engineering for Gas Turbines and

Power, 2007, vol. 129, pp. 358–369. DOI: 10.1115/1.2432896

Filippov P. Validation of the thermal NOx emissions model from a gas fuel combustor under atmospheric

pressure. Journal of Physics: Conference Series, 2017, vol. 899, pp. 1–5. DOI: 10.1088/1742-6596/899/9/092005

Howe G. et al. RTI Warm Syngas Cleanup Operational Testing at Tampa Electric Company’s Polk 1

IGCC Site: Final Scientific: Technical. Pittsburgh, PA, 2018. 197 р.

Woods M.C. Reaction kinetics and simulation models for novel high-temperature desulfurization sorbents.

Research Triangle Inst., Research Triangle Park, NC; Louisiana State Univ., Baton Rouge, USA, 1989,

no. DOE/MC/24160-2671.

Published

2020-09-30

How to Cite

[1]
КАГРАМАНОВ, Ю., ТУПОНОГОВ, В., РЫЖКОВ, А., ЖИЖИНА, У. and НАЗАРОВА, В. 2020. EVALUATING THE CONCENTRATION OF NITROGEN OXIDES AT THE MODEL GAS TURBINE COMBUSTION CHAMBER OUTLET. Bulletin of the South Ural State University series "Power Engineering". 20, 3 (Sep. 2020), 17–25. DOI:https://doi.org/10.14529/power200302.