REDUCING HYBRID POWER PLANT POWER LOSSES BY BALANCING THE LOAD IN THE NETWORK ON THE GENERATION AND CONSUMPTION SIDE

Authors

  • А.В. НОВЫХ Университет Ла-Лагуна
  • Х.А. МЕНДЕЗ ПЕРЕЗ Университет Ла-Лагуна
  • Б. ГОНЗАЛЕЗ-ДИАЗ Университет Ла-Лагуна
  • И.И. СВИРИДЕНКО Севастопольский государственный университет
  • Г.В. ГОГОЛЕВ Севастопольский государственный университет
  • В.А. ТИМОФЕЕВ Севастопольский государственный университет

DOI:

https://doi.org/10.14529/power200307

Keywords:

HYBRID POWER PLANT, RENEWABLE ENERGY SOURCES, LOAD BALANCING, POWER LOSSES, ENERGY STORAGE DEVICE, ENERGY INTENSIVE CONSUMER

Abstract

An increase in the share of renewable energy sources characterized by intermittent generation leads to a decrease in the quality of electricity and the need to balance the load on the network. The methods used today for balancing the load on the generation side, as well as the use of energy storage technology, do not always provide an effective solution to the balancing problem. This is especially evident when traditional generators are transferred from the base load electricity sources to the reserve ones. The main issue is the increased electric energy losses due to the low efficiency of the power storage technology. Using the most advanced hybrid power plant Gorona del Viento (El Hierro island, Canary archipelago, Spain), which includes traditional and renewable energy sources, as reference, we are describing the methods of balancing the load on the network, which includes balancing, both the electricity generation and consumption. Using the calculation models of the hybrid power plant operating modes, the possibility of implementing various load balancing strategies on the consumption side has been demonstrated, their features have been analyzed, their effectiveness in reducing energy losses has been demonstrated.

Downloads

Download data is not yet available.

References

Farhoodnea M., Mohamed A., Shareef H., Zayandehroodi H. Power Quality Impact of Renewable Energy

Based Generators and Electric. Procedia Technology, 2013, vol. 11, pp. 11–17. DOI: 10.1016/j.protcy.2013.12.156

Bevrani H., Ghosh A., Ledwich G. Renewable energy sources and frequency regulation: Survey and new

perspectives. IET Renewable Power Generation, 2010, vol. 4, iss. 5, pp. 438–457. DOI: 10.1049/iet-rpg.2009.0049

Эффективное использование возобновляемых источников энергии [Effektivnoe ispol'zovanie vozobnovlyaemykh istochnikov energii [Efficient use of renewable energy sources]]. Available at: https://alternativenergy.ru/

energiya/758-effektivnoe-ispolzovanie-vozobnovlyaemyh-istochnikov-energii.html (accessed 05.02.2020).

Остров зеленой энергетики [Ostrov zelenoy energetiki [Green Energy Island]]. Available at:

https://tnenergy.livejournal.com/58060.html (accessed 12.01.2020).

Informe Central Hidroeolica 2018 – Gorona-del-Viento. El Hierro. Available at: http://

www.goronadelviento.es/wp-content/uploads/2019/05/Informe-anual-Central-Hidroe%C3%B3lica-2018-Goronadel-Viento.pdf (accessed 01.07.2019).

Garcia Latorre F.J., Quintana J.J., de la Nuez I. Technical and economic evaluation of the integration

of a wind-hydro system in El Hierro island. Renewable Energy, 2019, vol. 134, pp. 186–193. DOI:

1016/j.renene.2018.11.047

Declaración Ambiental Enero-Diciembre 2.018 CD Llanos Blancos. Endesa, APODERADO Llanos

Blancos, 2019. 47 p.

Novykh O., Méndez Pérez J.A., González-Díaz B., Sviridenko I. Performance analysis of hybrid

hydroelectric gorona del viento and the basic directions of its perfection. Renewable Energy and Power Quality

Journal, 2019, vol. 17, pp. 489–494. DOI: 10.24084/repqj17.353

Riechmann, Jorge. Gorona del Viento y la transición energética: ¿qué cabe esperar? Available at:

https://www.15-15-15.org/webzine/2016/08/01/gorona-del-viento-y-la-transicion-energetica-que-cabe-esperar/

(accessed 10.12.2019).

Abdi H., Mohammadi-ivatloo B., Javadi S., Reza Khodaei A., Dehnavi E. Energy Storage Systems.

Distributed Generation Systems: Design, Operation and Grid Integration, 2017, pp. 333–368. DOI:

1016/B978-0-12-804208-3.00007-8

Díaz-González F., Sumper A., Gomis-Bellmunt O., Villafáfila-Robles R. A review of energy storage

technologies for wind power applications. Renewable and Sustainable Energy Reviews, 2012, vol. 16, iss. 4,

pp. 2154–2171. DOI: 10.1016/j.rser.2012.01.029

Joseph A., Shahidehpour M. Battery storage systems in electric power systems. 2006 IEEE Power

Engineering Society General Meeting, 2006, pp. 8. DOI: 10.1109/PES.2006.1709235

Morgan R., Stuart N., Emma G., Gareth B. Liquid air energy storage – Analysis and first results from a pilot

scale demonstration plant. Applied Energy, 2015, vol. 137, pp. 845–853. DOI: 10.1016/j.apenergy.2014.07.109

Poonpun P., Jewell W. Analysis of the cost per kWh to store electricity. IEEE Transactions on Energy

Conversion, 2008, vol. 23, pp. 529–534. DOI: 10.1109/TEC.2007.914157

Arias J., Calle M., Turizo D., Guerrero J., Candelo-Becerra J.E. Historical load balance in distribution

systems using the branch and bound algorithm. Energies, 2019, vol. 12, iss. 7, 1219. DOI: 10.3390/en12071219

Sicchar J.R., Da Costa Jr.C.T., Silva J.R., Oliveira R.C., Oliveira W.D. A Load-Balance System Design

of Microgrid Cluster Based on Hierarchical Petri Nets. Energies, 2018, vol. 11, iss. 12, 3245. DOI:

3390/en11123245

Kim T.-Y., Sung-Bae C. Predicting residential energy consumption using CNN-LSTM neural networks.

Energy, 2019, vol. 182, pp. 72–81. DOI: 10.1016/j.energy.2019.05.230

Baterías como aliados del agua para producir energía eléctrica más limpia en Canarias. Available at:

http://rac-ciencias.org/wp/wp-content/uploads/2019/05/ZZJose-Manuel-Valle-1.pdf (accessed 14.03.2020).

Применение технологии управления спросом на электроэнергию. Цифровая подстанция [Primenenie tehnologii upravlenija sprosom na jelektrojenergiju. Cifrovaja podstancija [The application of electricity demand management technology. Digital substation]]. Available at: http://digitalsubstation.com/blog/2019/11/07/

primenenie-tehnologii-upravleniya-sprosom-na-elektroenergiyu/ (accessed 14.03.2020).

Muralitharan K., Sakthivel R., Shi Y. Multiobjective optimization technique for demand side

management with load balancing approach in smart grid. Neurocomputing, 2016, vol. 177, pp. 110–119. DOI:

1016/j.neucom.2015.11.015

Costanzo G.T., Zhu G., Anjos M.F., Savard G. A System Architecture for Autonomous Demand Side

Load Management in Smart Buildings. IEEE Transactions on Smart Grid, 2012, vol. 3, iss. 4, pp. 2157–2165.

DOI: 10.1109/TSG.2012.2217358

Nace el proyecto piloto Gamma, un laboratorio demostrador de la gestión digitalizada de la energía.

Available at: https://www.smartgridsinfo.es/2020/03/06/nace-proyecto-piloto-gamma-laboratorio-demostradorgestion-digitalizada-energia (accessed 22.02.2020).

Novykh A.V., Sviridenko I.I., Gogolev G.V. Improving the Efficiency of a Hybrid Electric Power Plant

by Means of a Virtual Power Plant. Bulletin of the South Ural State University. Ser. Power Engineering, 2019,

vol. 19, no. 2, pp. 87–96. (in Russ.). DOI: 10.14529/power190210

Osório G.J., Shafie-khah M., Carvalho G.C.R., Catalão J.P.S., Osório G.J. Analysis Application of Controllable Load Appliances Management in a Smart Home. Energies, 2019, vol. 12, 3710. DOI: 10.3390/en12193710

Liu J., Li M., Fang F., Niu Y. Review on virtual power plants. Chinese Society for Electrical Engineering,

, vol. 34, no. 29, pp. 5103–5111. DOI: 10.13334/j.0258-8013.pcsee.2014.29.012

Ropuszynska-Surma E., Weglarz M. A virtual power plant as a cooperation network. Marketing and

Management of Innovations, 2018, vol. 4, pp. 136–149. DOI: 10.21272/mmi.2018.4-13

Published

2020-09-30

How to Cite

[1]
НОВЫХ, А., МЕНДЕЗ ПЕРЕЗ, Х., ГОНЗАЛЕЗ-ДИАЗ, Б., СВИРИДЕНКО, И., ГОГОЛЕВ, Г. and ТИМОФЕЕВ , В. 2020. REDUCING HYBRID POWER PLANT POWER LOSSES BY BALANCING THE LOAD IN THE NETWORK ON THE GENERATION AND CONSUMPTION SIDE. Bulletin of the South Ural State University series "Power Engineering". 20, 3 (Sep. 2020), 65–77. DOI:https://doi.org/10.14529/power200307.