SYNTHESIS OF A BOOST CONVERTER FOR A LOAD SIMULATOR OF AUTONOMOUS OBJECTS POWER SUPPLY SYSTEMS

Authors

  • А.Г. ЮДИНЦЕВ Научно-исследовательский институт автоматики и электромеханики Томского государственного университета систем управления и радиоэлектроники
  • А.А. ТКАЧЕНКО Научно-исследовательский институт автоматики и электромеханики Томского государственного университета систем управления и радиоэлектроники
  • Д.Ю. ЛЯПУНОВ Национальный исследовательский Томский политехнический университет

DOI:

https://doi.org/10.14529/power200309

Keywords:

LOAD SIMULATOR, BOOST CONVERTER, AVERAGED MODEL, DISCRETE MODEL, POWER SUPPLY SYSTEM, DESIGN, BLOCK DIAGRAM, DIGITAL SYNTHESIS, DIGITAL MODULE

Abstract

The paper deals with the synthesis of a boost converter for a simulator designed to form loads of power supply systems of autonomous objects based on the converter mathematical description in the form of a differential equations system. Equations that allow building a model of a boost converter that combines the power part and the control system are derived. This model describes the electromagnetic and information processes within the device and is implemented as a digital module within the control system of the converter. A block diagram of the model in MATLAB Simulink can be implemented as both continuous averaged and discrete. This depends on the control signal applied to the model input, i.e. continuous or pulse periodic with duty ratio D. The continuous averaged model is used for the digital synthesis of the converter, whereas discrete is employed to test the boost converter of the load simulator. A current transfer function of the converter with variable parameters depending on the duty ratio is derived. The developed boost converter provides the load current of up to 360 A. The ripple coefficient of the input current is under 0,6 %. The research results may be of interest to specialists in the field of power electronics, power supply systems of autonomous objects and control systems.

Downloads

Download data is not yet available.

References

Lyapunov D.Y., Tkachenko A.A., Yudintsev A.G. [Methodology of Load Simulator Design for Ground

Testing of Power Supply Systems of Autonomous Objects]. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2020, no. 1 (46), pp. 60–66. (in Russ.) DOI: 10.18503/2311-8318-2020-1(46)-60-66

Thounthong P., Mungporn P., Guilbert D., Takorabet N. et al. Design and control of multiphase interleaved

boost converters-based on differential flatness theory for PEM fuel cell multi-stack applications. Electrical Power

and Energy Systems, 2020, no. 124 (2021) 106346, pp. 1–13. DOI: 10.1016/j.ijepes.2020.106346

Kalita J., Balas V.E., Borah S, Pradhan R. Advances in Intelligent Systems and Computing. Recent Developments in Machine Learning and Data Analytics. Singapore, Springer Nature Singapore Pte Ltd., Vol. 740,

530 p.

Strasser T.I., de Jong E.C.W., Sosnina M. European Guide to Power System Testing. Cham, Springer Nature Switzerland AG, 2020. 132 p.

Smirnov Y.S, Lysov A.N., Serebryakov P.B. [Electromechatronic Converters Dataware]. Bulletin of

the South Ural State University. Ser. Power Engineering, 2012, vol. 17, no. 16, pp. 31–36. (in Russ.)

Korolev P., Novikov K, Polesskiy S., Korotkova G. The Implementation of the Cross-cutting Design of Electronic Communication Modules Using National Instruments Technologies. Tomsk, Proc. of International Siberian

Conference on Control and Communications SIBCON, IEEE, 2019, pp. 1–4. DOI: 10.1109/sibcon.2019.8729585

Lukashenkov A.V., Kapustin I.V. [A Generalized Mathematical Model of a Boost Pulse Voltage Converter]. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Bulletin of the Tula State University.

Technical Sciences], 2012, vol. 10, pp. 189–198. (in Russ.)

Meleshin V.I. Tranzistornaya preobrazovatel'naya tekhnika [Transistor Converter Technology], Moscow,

Tehnosfera Publ., 2005. 632 p.

Derbel N., Zhu Q. Modeling, Identification and Control Methods in Renewable Energy Systems. Singapore,

Springer Nature Singapore Pte Ltd., 2019. 372 p.

Rashid M. Power Electronics Handbook. Oxford, Butterworth-Heinemann, Elsevier, 2018. 1496 p.

Meleshin V.I. Upravlenie tranzistornymi preobrazovatelyami elektroenergii [Control of Transistor Electric Power Converters], Moscow, Tekhnosfera Publ., 2011. 576 p.

Korshunov A.I. [Improving the Quality of the Output Voltage Stabilization of of a Pulse DC-DC Converter]. Izvestiya vuzov. Priborostroenie [Journal of Instrument Engineering], 2013, vol. 56, no. 3, pp. 48–57.

(in Russ.)

Primshits P.P., Mironovich A.V. [Synthesis of an Automatic Control System of a Boost DC-DC Conveter

when Operation on an Active Load]. Energetika. Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh

ob"edineniy SNG [Energetika. Proceedings of CIS higher education institutions and power engineering associations], 2005, no. 6, pp. 29–36. (in Russ.)

Mikhalcenko G.Y., Kobzev A.V., Apasov V.I. [Study of the Combined Buck-boost DC-DC Converter

in the Composition of High-voltage Energy-converting Equipment]. Doklady TUSUR [Proceedings of Tomsk

State University of Control Systems and Radioelectronics], 2019, vol. 22, no. 1, pp. 89–94. (in Russ.) DOI:

21293/1818-0442-2019-22-1-89-94

Remes C.L., Goncalves da Silva G.R., Treviso A., Coelho M.A.J., Campestrini L. Data-Driven Approach

for Current Control in DC-DC Boost Converters. IFAC PapersOnLine, 2019, vol. 52, iss. 1, pp. 190–195. DOI:

1016/j.ifacol.2019.06.059

Frolov V.Y. Smorodinov V.V. Ustroystva silovoy elektroniki i preobrazovatel'noy tekhniki s razomknutymi i zamknutymi sistemami upravleniya v srede Matlab – Simulink [Power Electronic Devices and Converting

Technology Using Open-Loop and Feedback Control Systems in Matlab – Simulink], Saint Petersberg, Lan’ Publ.,

332 p.

Sabanci K., Balci S. Development of an expression for the output voltage ripple of the DC-DC boost converter circuits by using particle swarm optimization algorithm. Measurement, 2020, no. 158 (2020) 107694, pp. 1–9.

DOI: 10.1016/j.measurement.2020.107694

Narayanaswamy P. R. I. Power Electronic Converters. Interactive Modelling Using Simulink. CRC Press,

Taylor & Francis Group, 2018. 340 p.

Ruan X., Chen W., Fang T., Zhuang K., Zhang T., Yan H. Control of Series-Parallel Conversion Systems.

Beijing, Science Press, Singapore Springer Nature Singapore Pte Ltd., 2019. 213 p.

Scvortsov L.M. Chislennoe reshenie obyknovennykh differentsial'nykh i differentsial'no-algebraicheskikh

uravneniy [Numerical solution of ordinary differential and differential-algebraic equations]. Moscow, DMK Press

Publ., 2018. 230 p.

Published

2020-09-30

How to Cite

[1]
ЮДИНЦЕВ, А., ТКАЧЕНКО, А. and ЛЯПУНОВ, Д. 2020. SYNTHESIS OF A BOOST CONVERTER FOR A LOAD SIMULATOR OF AUTONOMOUS OBJECTS POWER SUPPLY SYSTEMS. Bulletin of the South Ural State University series "Power Engineering". 20, 3 (Sep. 2020), 88–96. DOI:https://doi.org/10.14529/power200309.