COMPARATIVE ASSESSMENT OF SYNCHRONOUS GENERATORS WINDINGS AS A PART OF DC SOURCE CONNECTION SCHEMES

Authors

  • С.Г. ВОРОНИН Южно-Уральский государственный университет
  • Н.В. КЛИНАЧЕВ Южно-Уральский государственный университет
  • А.М. ДАВЛАТОВ Южно-Уральский государственный университет
  • Д.В. ПАУКОВ Южно-Уральский государственный университет

DOI:

https://doi.org/10.14529/power200311

Keywords:

SYNCHRONOUS GENERATOR, PERMANENT MAGNET, PULSED RECTIFIED VOLTAG, SEMICONDUCTOR RECTIFIER, MULTIPHASE CLOSED OR OPEN WINDING, SPECIFIC ELECTRICAL LOSSES IN COPPER, OPERABILITY IN CASE OF FAILURES

Abstract

The article deals with the schemes of DC sources based on a multiphase synchronous generator with excitation from permanent magnets and a rectifier. It evaluates various options for constructing circuits with the number of phases changing from two to ten along with the different generator windings connections, i.e. N-beam star and a closed ring of N sections. It is proved that, ceteris paribus compared to multiphase windings in terms of specific electric losses, windings with a small, i.e. 2 to 4, number of phases are preferable. The advantages of closed multiphase windings compared to open windings in terms of specific electric losses and maintaining output characteristics during single failures. Mathematical models were used to analyze the ripple of the rectifier output voltage for a different number of phases and various schemes of the windings connection, both in the normal mode and with the faulty rectifier diodes. The influence of the inductance of the generator winding on the value of voltage ripples is estimated. The authors make a conclusion that the closed windings are significantly more preferable as far as the rectified voltage ripples are concerned.

Downloads

Download data is not yet available.

References

Karbouj H., Rather Z.H., Flynn D. Non-synchronous fast frequency reserves in renewable energy integrated power systems. A critical review International Journal of Electrical Power and Energy Systems, 2019, no. 106,

pp. 488–501. DOI: 10.1016/j.ijepes.2018.09.046

Zhu L., Yuan Z., Sheng C., Liu Z., Guo J. Review of frequency support control methods for asynchronous interconnection system based on VSC-HVDC 2019. Electric Power Automation Equipment, 2019, vol. 39 (2), pp. 84–92.

Debry L., Prevost M.S., Panciatici T., Van P., Cutsem T. Decentralized model predictive control of voltage

source converters for AC frequency containment apangelis. International Journal of Electrical Power and Energy

Systems, 2018, no. 98, pp. 342–349. DOI: 10.1016/j.ijepes.2017.12.015

Voronin S.G., Davlatov A.M., Sultonov O.O. et al. [Automated mini-hydroelectric power station as the basis of the power supply system of mountainous regions of Tajikistan]. Bulletin of the South Ural State University.

Ser. “Power Engineering”, 2019, vol. 19, no. 3, pp. 100–107. DOI: 10.14529/power190311. (in Russ.)

Gandzha S., Aminov D., Kosimov B. Design of Brushless Electric Machine with Axial Magnetic Flux

Based on the Use of Nomograms. Proceedings – 2018 International Ural Conference on Green Energy (UralCon

, 2018, pp. 282–287. DOI: 10.1109/uralcon.2018.8544320

Gandzha S., Aminov D., Kiessh I., Kosimov B. Application of Digital Twins Technology for Analysis of

Brushless Electric Machines with Axial Magnetic Flux. Proceedings – 2018 Global Smart Industry Conference

(GloSIC – 2018), 2018, pp. 8570132. DOI: 10.1109/glosic.2018.8570132

Gandzha S., Kosimov B., Aminov D. [Selection of the optimal design of the Pilgerstan drive electric motor

for the seamless pipe manufacturing technology]. Bulletin of the South Ural State University. Ser. “Power Engineering”, 2019, vol. 19, no. 1, pp. 5–17. DOI: 10.14529/power190101. (in Russ.)

Gandzha S.A., Aminov D.S., Kosimov B.I., Nimatov P.P. Development of an engineering technique for

calculating magnetic systems with permanent magnets based on the finite element method]. Vestnik PNIPU.

Seriya “Elektrotekhnika, informatsionnye tekhnologii, sistemy upravleniya” [PNRPU Bulletin. Series “Electrical Engineering, Information Technology, Control Systems”], 2019, no. 29, pp. 58–74. (in Russ.) DOI:

15593/2224-9397/2019.1.04

Sohn J., Hong S., Sunwoo M. Alternator torque model based on equivalent circuit of synchronous generator

for electric power management. IEEE Transactions on Vehicular Technology, 2013, no. 62(8), pp. 3593–3602.

DOI: 10.1109/tvt.2013.2266416

Kabir S.M., Shuttleworth R.L. Brushless exciter model. IEE Proceedings C: Generation Transmission

and Distribution, 1994, no. 141 (1), pp. 61–67. DOI: 10.1049/ip-gtd:19949704

Inoue K., Yamashita H., Nakamae E., Fujikawa T. Brushless self-excited three-phase synchronous generator

without exciter. Electrical Engineering in Japan, 1993, no. 113 (8), pp. 101–115. DOI: 10.1002/eej.4391130810

Klinachev N.V. Lineynaya nepreryvnaya dinamicheskaya model' reversivnogo sinkhronno-vektornogo

vypryamitelya. Aktivnyy i passivnyy rezhimy raboty [[Linear continuous dynamic model of a reversible synchronous vector rectifier. Active and passive operation modes]. Available at: http://model.exponenta.ru/k2/Jigrein/

dcs_20140628.htm (accessed 20.10.2019).

Voronin S.G. Elektroprivod letatel’nykh apparatov: konspekt lektsiy [Electric drive of aircraft: Lecture

notes]. Chelyabinsk: ChGTU, 1995, part 1. – 110 p. Available at: http://epla.susu.ru/glv_050.htm (accessed

03.2016).

Wang B., Venkataramanan G., Bendre A. Unity power factor control for three phase three level rectifiers

without current sensors. IEEE Transactions on Industry Applications, 2007, vol. 43, no. 5, pp. 1341–1348. Available at: http://www.egr.msu.edu/~bingsen/files_publications/C-05_IAS.pdf (accessed 15.03.2016). DOI:

1109/tia.2007.904433

Dixon J.W. Three-Phase Controlled Rectifiers. Chapter 12 in “Power Electronics Handbook”, Academic

Press, Harcourt Place, 32 Jamestown Road, London NW1 7BY, UK, www.academicpress.com, August 2001,

pp. 183–196. Available at: http://web.ing.puc.cl/~power/paperspdf/dixon/21.pdf (accessed 15.03.2016).

But D.A. Beskontaktnyye elektricheskiye mashiny: ucheb. posobiye [Contactless electrical machines: manual

for the specialty electromechanics and electrical power engineering]. 2nd ed. Мoscow, Vysshaya shkola, 1990. 416 p.

Toulabi M.S., Torkaman H., Afjei E. [Experimental comparison between the electric efficiencies of two

different types of switched reluctance generators]. 2nd Power Electronics, Drive Systems and Technologies Conference, PEDSTC – 2011, 5742408, pp. 157–162. DOI: 10.1109/pedstc.2011.5742408

Hou J., Li H., Li J., Hu J. Research of field magnetic motive force of non-salient pole synchronous generator with field windings inter-turn short circuit. Proceedings of the Chinese Society of Electrical Engineering,

, vol. 30 (SUPPL.), pp. 220–225.

Fahn C.-S., Sun H. Development of a data glove with reducing sensors based on magnetic induction.

IEEE Transactions on Industrial Electronics, 2005, no 52 (2), pp. 585–594. DOI: 10.1109/tie.2005.844259

Afjei E., Torkaman H. Comparison of two types of dual layer generator in field assisted mode utilizing

D-FEM and experimental verification. Progress in Electromagnetics Research, 2010, no 23, pp. 293–309. DOI:

2528/pierb10060808

Gomberg B.N., Sogrin A.I., Mehvanik N.N. Ripple of Rectified EMF in Alternators. Bulletin of

the South Ural State University. Ser. Power Engineering, 2019, vol. 19, no. 2, pp. 97–106. (in Russ.) DOI:

14529/power190211

Balagurov, V.A. Proyektirovaniye spetsial’nykh elektricheskikh mashin peremennogo toka: ucheb.

posobiye [Designing Specialty AC Electric Machines: A Study Guide]. Мoscow, Vysshaya shkola, 1982, 272 p.

Klinichayev N.V. Mnogofaznyy vypryamitel’ – zvezda [Multiphase rectifier – star]. Available at: http://

model. exponent.ru/k2/Jigrein/md_152htm (accessed 20.10.2019).

Published

2020-09-30

How to Cite

[1]
ВОРОНИН, С., КЛИНАЧЕВ , Н., ДАВЛАТОВ , А. and ПАУКОВ, Д. 2020. COMPARATIVE ASSESSMENT OF SYNCHRONOUS GENERATORS WINDINGS AS A PART OF DC SOURCE CONNECTION SCHEMES. Bulletin of the South Ural State University series "Power Engineering". 20, 3 (Sep. 2020), 110–118. DOI:https://doi.org/10.14529/power200311.