NONDESTRUCTIVE TESTING METHOD BASED ON THE SPIN POLARIZATION EFFECT TEMPLATE

Authors

  • И.В. БРЯКИН Институт автоматики и информационных технологий НАН КР
  • И.В. Бочкарев Кыргызский государственный технический университет им. И. Раззакова
  • В.Р. Храмшин Магнитогорский государственный технический университет им. Г.И. Носова

DOI:

https://doi.org/10.14529/power200205

Keywords:

NON-DESTRUCTIVE TESTING, ELECTRICALLY CONDUCTIVE ELEMENTS, ELECTRIC CABLE, FEEDTHROUGH TWO-ELECTRODE CYLINDRICAL CAPACITOR WITH A CONCENTRATED CAPACITY, INDUCTION SENSOR, INTRINSIC ANGULAR MOMENTUM(SPIN) OF AN ELECTRON, SPIN MAGNETIC MOMENT, RESONANCE POLARIZATION FREQUENCY OF THE SPIN MAGNETIC MOMENTSOF FREE ELECTRONS

Abstract

This paper proposes a novel nondestructive testing method for electrically conductive objects. It is based on applying a fundamentally new physical effect which has not been used before in nondestructive testing systems. The method utilizes spin polarization phenomena that occur when free electrons of conductive materials are exposed to an alternating electric field. Researchers experimented with wire and cable conductors. A tested cable was moving longitudinally and exposed to an alternating electric field, which excited a waveform process, i.e. the polarization of spin magnetic moments of free electrons. An induction sensor registered this process and generated a control signal: induction EMF. Its parameters were compared against that of a reference signal obtained in advance in the same way utilizing spin polarization phenomena. Parametric deviations were then used to detect and classify conductor defects. The paper describes how to generate a reference signal appropriate for the objectives of testing. The developed method enables nondestructive testing of objects made of any conductive para- and diamagnetic materials, while it accuracy and reliability are not affected by the magnitude or evenness of the object movement speed, nor by vibrations or transverse oscillations against the physical field source or the induction sensor.

Downloads

Download data is not yet available.

References

Wang P., Qing Xu J., Su J. The research of urban distribution network high-reliability power supply construction. International Conference on Advanced Power System Automation and Protection, 2011, vol. 2,

pp. 1497–1500. DOI: 10.1109/APAP.2011.6180744

Velasco L.N., Silva T.V., Oliveira J.C. et al. An approach to improve power supply continuity throughout

the estimation of insulated power cable life expectance indexes. XI Brazilian Power Electronics Conference, 2011.

DOI: 10.1109/COBEP.2011.6085294

Town W.L. A review of eccentricity, capacitance and diameter gauges for continuous observation and recording of cable quality during manufacture. Power Engineering, 1962, vol. 109, pp. 151–162.

Jorrens P.P. Advances in computer-controlled measurements of cable parameters. IEEE Transactions on

Instrumentation and Measurement, vol. 20 (4), pp. 231–234.

Cheng Zh., Yang Y. Design of the intelligent monitoring system for wire drawing process. 13th International Computer Conference on Wavelet Active Media Technology and Information Processing, 2016, pp. 418–

Benjamin T.L. Power cable diagnostics: field application and case studies. Neta World USA, 2004. Available at: http:// electricityforum.com/td/wire-and-cable/power-cable-diagnostics.

Ida N., Meyendorf N. Handbook of advanced non-destructive evaluation. Springer Nature Switzerland AG,

DOI: 10.1007/978-3-319-30050-4_13-1

John V.B. Non-destructive Testing. Testing of Materials. Palgrave London, 1992, pp. 90–125. DOI:

1007/978-1-349-21969-8_8

Fedorov E.M., Koba A.A. Three-axis laser method for measuring the diameter of cylindrical objects. Proc.

Dynamics of Systems, Mechanisms and Machines, 2016, pp. 1–4. DOI: 10.1109/Dynamics.2016.7819008

Lee Shih-Hsiung, Yang Chu-Sing. A simple remote auxiliary inspection system. 10th International

Conference on Intelligent Computation Technology and Automation, 2017, pp. 180–183. DOI:

1109/ICICTA.2017.47

Richter J., Streitferdt D., Rozovad E. On the development of intelligent optical inspections. IEEE

th Annual Computing and Communication Workshop and Conference, 2017, pp. 1–6. DOI:

1109/CCWC.2017.7868455

Yan Tai-Shan, Cui Du-Wu. The method of intelligent inspection of product quality based on computer vision. 7th International Conference on Computer-Aided Industrial Design and Conceptual Design, 2006, pp. 1–6.

DOI: 10.1109/CAIDCD.2006.329469

Zhang H., Yang R., He Y., Foudazi A., Cheng L., Tian G. A review of microwave thermography nondestructive testing and evaluation. Sensors, 2017, vol. 17 (5), p. 1123. DOI: 10.3390/s17051123

McDonald J.M., Lutz T.J., Ulrickson M.A., Tanaka T.J., Youchison D.L., Nygren R.E. Phase Lag Infrared Thermal Examination (PLITE); A new non-destructive test process. IEEE 22nd Symposium on Fusion Engineering, 2007, pp. 1–4. DOI: 10.1109/FUSION.2007.4337873

Su Yeong Jeong, Byoung Chul Kim, Young Han Kim. Defect detection in a cylinder using an IR

thermographic device and point heating. International Conference on Control, Automation and Systems, 2007,

pp. 2389–2392. DOI: 10.1109/ICCAS.2007.4406732

Chunli Fan, Fengrui Sun, Li Yang. A general quantitative identification algorithm of subsurface defect for

infrared thermography. Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005, vol. 2, pp. 341–342. DOI: 10.1109/ICIMW.2005.1572552

Ruiz N., Vera P., Curpian J. et al. Matching pursuit-based signal processing method to improve ultrasonic

flaw detection in NDT applications. Electronics Letters, 2003, vol. 39 (4), pp. 413-414. DOI: 10.1049/el:20030262

Sun H.C., Saniie J. Ultrasonic flaw detection using split-spectrum processing combined with adaptivenetwork-based fuzzy inference system. IEEE Ultrasonics Symposium. International Symposium, 1999, vol. 1,

pp. 801–804. DOI: 10.1109/ULTSYM.1999.849518

Saniie J., Nagle D.T. Robust ultrasonic flaw detection using order statistic CFAR threshold estimators.

IEEE Ultrasonics Symposium, 1991, vol. 2, pp. 785–789. DOI: 10.1109/ULTSYM.1991.234083

Mook G., Hesse O., Uchanin V. Deep Penetrating Eddy Currents and Probes. ECNDT, 2006. Available at: http://ndt.net/article/ecndt2006/doc/Tu.3.6.2.pdf.

García-Martín J., Gómez-Gil J., Vázquez-Sánchez E. Non-destructive techniques based on eddy current

testing. Sensors, 2011, vol. 11 (3), pp. 2525–2565. DOI: 10.3390/s110302525

Cardelli E., Faba A., Specogna R., Tamburrino A., Trevisan F., Ventre S. Analysis methodologies and experimental benchmarks for eddy current testing. IEEE Transactions on Magnetics, 2005, vol. 41 (5), pp. 1380–

DOI: 10.1109/TMAG.2005.844357

Janoušek L., Smetana M., Strapáčová T., Rebican M., Duca A. Advanced procedure for nondestructive diagnosis of real cracks from eddy current testing signals. Elektro, 2014, pp. 567–570.

DOI: 10.1109/ELEKTRO.2014.6848961

Lehtiniemi R., Hartikainen J. An application of induction heating for fast thermal nondestructive evaluation. Review of Scientific Instruments, 1994, vol. 65, pp. 2099–2101. DOI: 10.1063/1.1144818

Zenzinger G., Bamberg J., Satzger W., Carl V. Thermographic crack detection by eddy current excitation.

Nondestructive Testing and Evaluation, 2007, vol. 22 (2), pp. 101–111. DOI: 10.1080/10589750701447920

Tsopelas N., Siakavellas N. Experimental evaluation of electromagnetic-thermal non-destructive inspection by eddy current thermography in square aluminum plates. NDT & E International, 2011, vol. 44 (7),

pp. 609–620. DOI: 10.1016/j.ndteint.2011.06.006

Wang Y., Gao X., Netzelmann U . Detection of surface cracks in metals under coatings by induction thermography. 14th quantitative infrared thermography conference, 2018, pp. 602–611. DOI: 10.21611/qirt.2018.064

Bryakin I.V., Bochkarev I.V., Khramshin V.R. The power cables quality diagnostics. International Russian Automation Conf., 2018. DOI: 10.1109/RUSAUTOCON.2018.8501787

Bryakin I.V., Bochkarev I.V., Khramshin V.R. Diagnostics of electrical wires and cables. International Conference on Industrial Engineering, Applications and Manufacturing, 2019. DOI: 10.1109/ICIEAM.2019.8742967

Woan G. The Cambridge handbook of physics formulas. Cambridge University Press, 2003. 230 p.

Bozorth R.M. Ferromagnetism. Wiley-IEEE Press, 1978. 968 p.

Morrish A.H. The physical principles of magnetism. Wiley-IEEE Press, 2001. 700 p.

Published

2023-06-12

How to Cite

[1]
БРЯКИН, И., Бочкарев, И. and Храмшин, В. 2023. NONDESTRUCTIVE TESTING METHOD BASED ON THE SPIN POLARIZATION EFFECT TEMPLATE. Bulletin of the South Ural State University series "Power Engineering". 20, 2 (Jun. 2023). DOI:https://doi.org/10.14529/power200205.

Most read articles by the same author(s)

1 2 > >>