HOW DEVIATIONS IN OPL PARAMETERS AFFECT THE STABILITY-CRITICAL FAULT CLEARANCE TIME

Authors

  • P.Yu. Gubin Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation
  • A.S. Tavlincev Ural Federal University named after the first President of Russia B.N. Yeltsin, Ekaterinburg, Russian Federation

DOI:

https://doi.org/10.14529/power190205

Keywords:

overhead line parameter, transient stability, normal distribution, critical fault clearance time

Abstract

From weather-related uncertainty to geometrical errors of OPL design, numerous factors contribute to the variations of impedance and conductance. Still, an unambiguous judgment can be made on how such variations could affect the transient stability does require additional simulations and computational experiments. This research seeks to evaluate how deviations in the parameters of OPL equivalent circuits could affect the transient stability of generators. To that end, the paper proposes a primitive trinodal test system for simulating random deviations in OPL equivalent circuit parameters so as to run multiple simulations of transients. Step One is to independently analyse each parameter in terms of how it affects the critical fault clearance time. Step Two is to simultaneously measure the line conductance and impedance and to monitor the curves of the test-network generators. The final step is to computationally analyse the collected data so as to find the controlled values as a function of equivalent- circuit parameters. Experimentation has revealed two patterns; first, only random deviations in reactance significantly affect the stability. Second, as found at Step Two, random deviations result in significant uncertainty and scatter of the parametric curves. Thus, the research demonstrates that neglecting the possible deviations in equivalent-circuit parameters in the first approximation does affect simulation results.

Downloads

Download data is not yet available.

References

Ахмедова, О.О. Уточненный алгоритм расчета активного сопротивления воздушной линии электропередачи с учетом погодных условий / О.О. Ахмедова // Международный журнал прикладных и фундаментальных исследований. – 2016. –

№ 12. – С. 387–389.

Бердин, А.С. Формирование параметров модели ЭЭС для управления электрическими режимами / А.С. Бердин, П.А. Крючков; Урал. гос. техн. ун-т. – Екатеринбург: ГОУ ВПО УГТУ – УПИ, 2000. – 100 с.

Веников, В.А. Переходные электромеханические процессы в электрических системах / В.А. Веников. – М.: Высшая школа, 1985. – 536 с.

Горев, А.А. Переходные процессы синхронной машины / А.А. Горев. – Л.: Наука, 1985. – 502 с.

Жданов, П.С. Вопросы устойчивости электрических систем / П.С. Жданов. – М.: Альянс, 2015. – 456 с.

Иванов, И.Е. Аналитическое определение параметров транспонированной линии электропередачи на базе синхронизированных векторных измерений / И.Е. Иванов // Вестник ИГЭУ. – 2019. – №. 1. – С. 30–42. DOI: 10.17588/2072-

2019.1.030-042

Идельчик, В.И. Электрические системы и сети / В.И. Идельчик. – М.: Энергоатомиздат, 1989. – 592 с.

Методические указания по устойчивости энергосистем. – М.: Изд-во НЦ ЭНАС, 2004. – 16 с.

Новиков, А.С. Влияние погрешностей информации на расчеты оптимальных режимов / А.С. Новиков, В.И. Идельчик, С.И. Паламарчук // Известия Академии Наук СССР. Энергетика и Транспорт. – 1981. – № 2. – С. 22–29.

Anderson, P. A probabilistic approach to power system stability analysis / P. Anderson, A. Bose // IEEE Transactions on Power Apparatus and Systems. – 1983. – Vol. 8. – P. 2430–2439. DOI: 10.1109/TPAS.1983.317742

Billinton, R. Probabilistic assessment of transient stability in a practical multimachine system / R. Billinton, P.R.S. Kuruganty // IEEE Transactions on Power Apparatus and Systems. – 1981. – Vol. 7. – P. 3634–3641. DOI: 10.1109/TPAS.1981.316657

Christakou, K. Voltage control in active distribution networks under uncertainty in the system model: a robust optimization approach / K. Christakou, M. Paolone, A. Abur // IEEE Transactions on Smart Grid. – 2017. – Vol. 9, iss. 6. – P. 5631–5642. DOI: 10.1109/TSG.2017.2693212

Frank, S. Temperature-Dependent Power Flow / S. Frank, J. Sexauer, S. Mohagheghi // IEEE Transactions on Power Systems. – 2013. – Vol. 28, iss. 4. – P. 4007–4018. DOI: 10.1109/TPWRS.2013.2266409

Kundur, P. Power system stability and control / P. Kundur. – New York : Mc Graw Hill Education, 2015. – 1196 p.

Zad, B.B. Impacts of the model uncertainty on the voltage regulation problem of medium-voltage distribution systems / B. B. Zad, J. Lobry, F. Vallee // IET Generation, Transmission & Distribution. – 2018. – Vol. 12, iss. 10. – P. 2359–2368. DOI: 10.1049/iet-gtd.2017.1829

Zarco, P. Power system parameter estimation: a survey / P. Zarco, A. G. Exposito // IEEE Transactions on Power Systems. – 2000. – Vol. 15, iss. 1. – P. 216–222. DOI: 10.1109/59.852124

Published

2019-06-30

How to Cite

[1]
Gubin, P. and Tavlincev, A. 2019. HOW DEVIATIONS IN OPL PARAMETERS AFFECT THE STABILITY-CRITICAL FAULT CLEARANCE TIME. Bulletin of the South Ural State University series "Power Engineering". 19, 2 (Jun. 2019), 39–47. DOI:https://doi.org/10.14529/power190205.