BACKUP ELECTROMECHANICAL BRAKE SYSTEM FOR THE WIND TURBINE

Authors

  • E.V. Solomin South Ural State University, Chelyabinsk, Russian Federation
  • E.A. Sirotkin South Ural State University, Chelyabinsk, Russian Federation
  • E.S. Bodrova South Ural State University, Chelyabinsk, Russian Federation
  • M.S. Chinenov South Ural State University, Chelyabinsk, Russian Federation

DOI:

https://doi.org/10.14529/power180207

Keywords:

wind energy, wind turbines, brake systems, backup systems

Abstract

The article presents data on Russian Federation regions with the highest average annual wind speeds and justifies the profitability of using wind power plants in these regions. Negative factors that can be encountered in the operation of wind power equipment in the zone of increased wind loads are considered. The necessity of application of duplicating braking systems in wind power plants is determined. Analytical comparison of existing methods of wind turbines braking is given, their advantages and disadvantages are revealed. The most reliable and efficient type is the electromechanical braking of a wind wheel, which combines the advantages of the considered analogues while lacking their shortcomings. A description of such electromechanical braking system for a vertically axial wind power plant is given using a computer 3D model created in the SolidWorks software package. The kinematic scheme of the braking system is illustrated, it describes the interconnection of the main components of the system: the electric drive, the reducer, the three-jaw brake unit and the brake drum on the wind turbine rotor. In addition, the article describes the suggested scheme and control algorithm for this braking system, based on the constant monitoring of the main components state and keeping it in acceptable operating ranges. The conclusion about the efficiency of the braking system application under consideration at wind power plants is made.

Downloads

Download data is not yet available.

References

Gogoberidze G., Abramov V.M., Karlin L.N., Lednova J. and Malakhova J. Marine Economic Potential

Assessment for Environmental Management in the Russian Arctic and Subarctic Coastal Regions/ International

Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management SGEM, 2014,

no. 3 (5), pp. 253–260. DOI: 10.5593/sgem2014/b53/s21.034

Dudin M.N., Sekerin V.D., Gorohova A.E., Bank S.V. and Danko T.P. Arctic Zone: Global Strategic Priorities for Integrated Development and Infrastructure Policy. Man in India, 2016, 96 (7), pp. 2297–2313.

Dudin M.N., Ivashchenko N.P., Frolova E.E., Abashidze A.H. and Smbatyan A.S. Innovative Approach to

the Development of the Logistics System of Supply of the Arctic Region Space. International Journal of Economics and Financial, 2016, iss. 6 (4), pp. 1965–1972.

Boute A. Renewable Energy Federalism in Russia: Regions as New Actors for the Promotion of Clean

Energy. Journal of Environmental Law, 2013, 25 (2), pp. 261–291. DOI: 10.1093/jel/eqt005

Gore O., Viljainen S., Makkonen M., Kuleshov D. Russian Electricity Market Reform: Deregulation or Reregulation? Energy Policy, 2012, no. 41, pp. 676–685. DOI: 10.1016/j.enpol.2011.11.031

Larionov A., Nezhnikova E. Role of Energy Efficiency in Improving the Quality of Housing Projects.

International Journal of Applied Engineering Research, 2016, no. 11 (6), pp. 4433–4439.

Runkle B.K., Wille C., Gažovič M., Wilmking M., Kutzbach L. The Surface Energy Balance and Its Drivers in a Boreal Peatland Fen of Northwestern. Russia Journal of Hydrology, 2014, no. 511, pp. 359–373. DOI:

1016/j.jhydrol.2014.01.056

Cole S. NASA-NOAA Satellite Reveals New Views of Earth at Night. Available at: https://www.nasa.gov/

mission_pages/NPP/news/earth-at-night.html (accessed 17.01.2018).

Sevastyanov S., Kravchuk A. The Russian Approach to National Security in the Arctic. Korean Journal of

Defense Analysis, 2017, no. 29 (1), pp. 131–150.

Schubert B. WorldWind Explorer Project. Available at: http://worldwind.earth/ (accessed: 18.01.2018).

Никитин А.Д. Моделирование переходных процессов при работе автономной ветроустановки с резервным источником энергии. Вестник ЮУрГУ. Серия «Энергетика». 2016. Т. 16, № 1. С. 36–41. DOI:

14529/power160106 [Nikitin A.D., Akifeva N.N. Simulation of Transient Processes at Operation of StandAlone Wind Turbine with Backup Power Source. Bulletin of the South Ural State University. Ser. Power Engineering, 2016, vol. 16, no. 1, pp. 36–41. (in Russ.) DOI: 10.14529/power160106]

Datta R., Ranganathan V.T. A Method of Tracking the Peak Power Points for a Variable Speed Wind

Energy Conversion System, IEEE Transactions on Energy Conversion, 2003, no. 18 (1), pp. 163–168. DOI:

1109/TEC.2002.808346

Hansen A.D., Sørensen P., Iov F., Blaabjerg F. Centralised Power Control of Wind Farm with Doubly Fed

Induction Generators. Renewable Energy, 2006, no. 31 (7), pp. 935–951. DOI: 10.1016/j.renene.2005.05.011

Bossanyi E.A. Wind Turbine Control for Load Reduction. Wind Energy, 2003, no. 6 (3), pp. 229–244.

DOI: 10.1002/we.95

Teodorescu R., Blaabjerg F. Flexible Control of Small Wind Turbines with Grid Failure Detection Operating in Stand-Alone and Grid-Connected Mode. IEEE Transactions on Power Electronics, 2004, no. 19 (5),

pp. 1323–1332. DOI: 10.1109/TPEL.2004.833452

Abrahamsen A.B., Mijatovic N., Seiler E., Sørensen M.P., Koch M., Nørgard P.B., Pedersen N.F.,

Træholt C., Andersen N.H., Østergard J. Design Study of 10 kW Superconducting Generator for Wind Turbine

Applications. IEEE Transactions on Applied Superconductivity, 2009, no. 19 (3), art. no. 5067256, pp. 1678–1682.

DOI: 10.1109/TASC.2009.2017697

Коробатов Д.В., Мартьянов А.С., Соломин Е.В., Сироткин Е.А. Эффективные методы регулирования мощности устройств на основе ВИЭ. Международный научный журнал Альтернативная энергетика и

экология. 2016. № 11-12 (199-200). С. 69–78. DOI: 10.15518/isjaee.2016.11-12.069-078 [Korobatov D.V.,

Martyanov A.S., Solomin E.V., Sirotkin E.A. [Efficient Power Control Methods of Devices Based on RES]. Mezhdunarodnyy nauchnyy zhurnal Al'ternativnaya energetika i ekologiya [International Scientific Journal for Alternative

Energy and Ecology], 2016, no. 11-12, pp. 69–78. (in Russ.) DOI: 10.15518/isjaee.2016.11-12.069-078]

Соломин Е.В., Сироткин Е.А., Козлов С.В. Электромеханическая система аварийного торможения

ветроэнергетической установки. Электротехнические системы и комплексы. 2016. № 1 (30). С. 19–23. [Solomin E.V., Sirotkin E.A., Kozlov S.V. [Electro-Mechanical System of Emergency Braking for Wind Turbine]. Elektrotekhnicheskie sistemy i kompleksy [Electrotechnical Systems and Complexes], 2016, no. 1, pp. 19–23. (in Russ.)]

Wang K., Hansen M.L., Moan T. Dynamic analysis of a floating vertical axis wind turbine under emergency shutdown using hydrodynamic brake, Energy Procedia, 2014, no. 53 (C), pp. 56–69. DOI:

1016/j.egypro.2014.07.215

Yankov P.V, Van Den Bossche A., Valchev V.C., Successive Resistive Braking Circuit for Permanent

Magnet Wind Turbine Generators. Proceedings of EPE-PEMC 2010 – 14th International Power Electronics and

Motion Control Conference, 2010, art. no. 5606915, pp. T1127–T1131. DOI: 10.1109/EPEPEMC.2010.5606915

Published

2018-02-15

How to Cite

[1]
Solomin, E., Sirotkin, E., Bodrova, E. and Chinenov, M. 2018. BACKUP ELECTROMECHANICAL BRAKE SYSTEM FOR THE WIND TURBINE. Bulletin of the South Ural State University series "Power Engineering". 18, 2 (Feb. 2018), 55–61. DOI:https://doi.org/10.14529/power180207.

Most read articles by the same author(s)