STUDY AND MATHEMATICAL MODELING OF A LITHIUM-ION BATTERY

Authors

  • A.G. Vozmilov South Ural State University, Chelyabinsk, Russian Federation
  • S.A. Panishev South Ural State University, Chelyabinsk, Russian Federation
  • A.A. Lisov South Ural State University, Chelyabinsk, Russian Federation

DOI:

https://doi.org/10.14529/power220203

Keywords:

lithium-ion battery, mathematical model, MATLAB/Simulink, curves build

Abstract

This study considers existing methods of mathematical modeling of lithium-ion batteries based on
the Shepherd formula, as well as using formulas from the general course of physics. In order to measure experimental
data in automatic mode, a special measuring facility was developed, the main element of the setup is a programmable
platform based on the ATmega328p microprocessor. It controls the process, measures the voltage on the battery and
transmits data to the computer every 5 seconds via the UART interface of the microprocessor for further analysis.
On the basis of the data obtained, an experimental dependence of the battery discharge by direct current over a certain
period of time was built. This was followed by a calculation of battery capacity. The load is 20 resistors connected in
series-parallel, in order to dissipate the thermal power released on them when an electric current flows. Since the resistors are carbon with precision accuracy class, heating does not raise ambient temperature by more than 10 degrees. Thus
any change in their resistance can be neglected. The values obtained were used to implement and test the mathematical
model in the MATLAB/Simulink simulation environment. The test results showed the similarity of the obtained values
with the idealized Shepherd model, since the standard deviation of all points from this model was 2.6%.

Downloads

Download data is not yet available.

References

Linden D. Handbook of Batteries. Second ed. New York: McGraw-Hill, 1995. 324 p.

Bergveld H.J., Kruijt W.S., Notten P.H.L. Battery Management Systems: Design by Modelling. Kluwer Academic Publishers, 2002. 512 p. DOI: 10.1007/978-94-017-0843-2_4

Reiner K. Lithium-Ion Batteries: Basics and Applications. New York: Kindlle, 2020. 588 p.

Safety focused modeling of lithium-ion batteries: A review / S. Abada, G. Marlair, A. Lecocq et al. // Journal of Power Sources. 2016. Vol. 306. P. 178–192. DOI: 10.1016/j.jpowsour.2015.11.100

Algorithms for Advanced Battery-Management Systems / N.A. Chaturvedi, R. Klein, J. Christensen et al. // IEEE Control Systems. 2010. Vol. 30 (3). P. 49–68. DOI: 10.1109/MCS.2010.936293

Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective /

V. Ramadesigan, P.W.C. Northrop, S. De et al. // Journal of The Electrochemical Society. 2012. Vol. 159 (3). P. R31–R45. DOI: 10.1149/2.018203jes

Braatz R.D., Seebauer E.G., Alkire E.C. Multiscale Modeling and Design of Electrochemical Systems. Wiley-VCH, 2018. P. 289–334. DOI: 10.1002/9783527625307.ch4

He H., Xiong R., Fan J. Evaluation of Lithium-Ion Battery Equivalent Circuit Models For State of Charge Estimation by an Experimental Approach // Energies. 2011. Vol. 4 (4). P. 582–598. DOI: 10.3390/en4040582

Comparison study on the battery models used for the energy management of batteries in electric vehicles / H. He, R. Xiong, H. Guo, S. Li // Energy Conversion and Management. 2012. Vol. 64. P. 113–121. DOI: 10.1016/j.enconman.2012.04.014

Имитатор литий-ионного аккумулятора с рекуперацией энергии / А.А Брянцев, А.Н. Ильин, Л.А. Качин, В.Г. Букреев // Электронные и электромеханические системы и устройства: сб. науч. тр. НПЦ «Полюс». Томск: Изд-во Томского политехнического университета, 2016. С. 136–138.

Martínez-Rosas E., Vasquez-Medrano R., Flores A. Modeling and simulation of lithium-ion batteries // Computers & Chemical Engineering. 2011. Vol. 35 (9). P. 1937–1948. DOI: 10.1016/j.compchemeng.2011.05.007

Li S., Ke B. Study of battery modeling using mathematical and circuit oriented // 2011 IEEE Power and Energy Society General Meeting. 2011. P. 1–8. DOI: 10.1109/pes.2011.6039230

Distributed MPC for efficient coordination of storage and renewable energy sources across control areas / K. Baker, J. Guo, G. Hug, X. Li // IEEE Transaction on Smart Grid. 2016. Vol. 7. P. 992–1001. DOI: 10.1109/tsg.2015.2512503

Published

2022-05-05

How to Cite

[1]
Vozmilov, A., Panishev, S. and Lisov, A. 2022. STUDY AND MATHEMATICAL MODELING OF A LITHIUM-ION BATTERY. Bulletin of the South Ural State University series "Power Engineering". 22, 2 (May 2022), 30–36. DOI:https://doi.org/10.14529/power220203.