MATHEMATICAL MODELING OF A HYBRID WIND-SOLAR STATION FOR POWER SUPPLY OF OWN NEEDS

Authors

  • S.V. Mitrofanov Orenburg State University, Orenburg, Russia
  • K.A. Perepelkin Orenburg State University, Orenburg, Russia

DOI:

https://doi.org/10.14529/power220302

Keywords:

photovoltaic module, solar panels, wind generator, hybrid power plant

Abstract

The article presents mathematical modeling of a hybrid power plant (GEU) operating on renewable
energy sources. The GEU includes a wind module, a solar module, and an electric power storage system. It is supposed
to use the GEU for power supply of the botanical garden's own needs, the principle of operation of the station is
described. The analysis of monthly data of average insolation and average values of wind speed in the Orenburg region
is carried out. The real schedule of loads of the botanical garden is used for calculations. The analysis is based on data
on solar insolation and wind speed over the past 20 years. It is revealed that the greatest generation of solar electricity
during the year occurs in the period from June to July, and the greatest generation of wind electricity during the year
occurs in the period from January to March. The total generation makes it possible to provide the botanical garden's
own needs with electricity in any month except October and November. The excess electricity generated in the summer
can be used for the production of hydrogen, which is used as fuel for a hydrogen fuel cell or its storage in storage devices.

Downloads

Download data is not yet available.

References

Frimpong S.O., Millham R.C., Agbehadji I.E. A comprehensive review of nature-inspired search techniques used in estimating optimal configuration size, cost, and reliability of a mini-grid HRES: a systemic review // Lecture notes in computer science. 2021. No. 12957 LNCS. P. 492–507.

Economic evaluation of a hybrid renewable energy system (HRES) using hybrid optimization model for electric renewable (homer) software-a case study of rural India / K.K. Sharma, A. Gupta, R. Kumar et al. // International journal of low carbon technologies. 2021. Vol. 16, no. 3. P. 814–821. DOI: 10.1093/ijlct/ctab012

Sizing and economic analysis of stand-alone hybrid photovoltaic-wind system for rural electrification: A case study Lundu, Sarawak / H.N. Afrouzi, A. Hassan, Y.P. Wimalaratna et al. // Cleaner engineering and technology. 2021. Vol. 4. P. 100191. DOI: 10.1016/J.CLET.2021.100191

Babatunde O.M., Munda J.L., Hamam Y. Selection of a hybrid renewable energy systems for a low-income household // Sustainability. 2019. Vol. 11, no. 16. P. 4282. DOI: 10.3390/SU11164282

Optimal design and techno-economic analysis of renewable-based multi-carrier energy systems for industries: A case study of a food factory in China / Ximei Li, Jianmin Gao, Shi You, Yi Cheng // Journal Pre-proof.

Techno-economic and environmental evaluation of grid-connected and off-grid hybrid intermittent power

generation systems: A case study of a mild humid subtropical climate zone in China / C. Li, Y. Zheng, Z. Li et al. //

Energy. 2021. Vol. 230. P. 120728.

Безруких П.П., Безруких П.П. (мл.), Грибков С.В. Ветроэнергетика: справ.-метод. изд. / под общ. ред. П.П. Безруких. М.: Интехэнерго-Издат: Теплоэнергетик, 2014. 304 с.

Saryyev Kakageldi A., Nazarov Serdar B., Matyakubov Amirhan A. Scientific and technical basis for the implementation of combined technologies using renewable energy sources // Syktyvkar university bulletin. Series 2: Biology. Geology. Chemistry. Ecology. 2022. No. 1 (21). С. 78–86. DOI: 10.34130/2233-1277-2021-4-78

Усков А.Е. Определение оптимальной группы потребителей для электроснабжения с использованием ветро-солнечных электростанций // Вестник Донского государственного технического университета. 2018. Т. 18, № 1. С. 118–123. DOI: 10.23947/1992-5980-2018-18-1-118-123

Сабурова Е.А., Цыцельская В.А. Ветроэнергетика, принцип работы ветрогенераторов и перспективы развития // Сборник докладов XXI Международной научно-практической конференции. Тюмень: Тюменский индустриальный университет, 2019. С. 460–465.

Optimal sizing of a Hybrid Renewable Energy System: Importance of data selection with highly variable renewable energy sources / J.C. Alberizzi, J.M. Frigola, M. Rossi, M. Renzi // Energy Conversion and Management. 2020. Vol. 223. P. 113303.

Митрофанов С.В., Немальцев А.Ю., Байкасенов Д.К. Принципы построения системы управления и контроля ветро-солнечной электростанции // Состояние и перспективы развития электро- и теплотехнологии (ХХI Бенардосовские чтения): материалы междунар. науч.-технической конф., Иваново, 02–04 июня 2021 года. Иваново: Ивановский государственный энергетический университет им. В.И. Ленина, 2021. С. 229–232.

Abo-Elyousr F.K., Guerrero J.M., Ramadan H.S. Prospective hydrogen-based microgrid systems for optimal leverage via metaheuristic approaches // Applied Energy. 2021. Vol. 300. P. 117384.

Global Solar Atlas [Электронный ресурс]. URL: https://globalsolaratlas.info (дата обращения:

06.2022).

Global Wind Atlas [Электронный ресурс]. URL: https://globalwindatlas.info (дата обращения:

06.2022).

NASA Prediction of Worldwide Energy Resource [Электронный ресурс]. URL: https://power.larc.nasa.gov (дата обращения: 27.05.2022).

Митрофанов С.В., Немальцев А.Ю., Байкасенов Д.К. Первичная апробация автоматизированного двухкоординатного солнечного трекера в климатических условиях Оренбургской области как перспектива создания программно-аппаратного комплекса // Альтернативная энергетика и экология (ISJAEE). 2018. № 7-9. С. 43–54. DOI: 10.15518/isjaee.2018.07-09.043-054

Митрофанов С.В., Байкасенов Д.К. Исследование способов повышения энергетической эффективности сетевой фотоэлектрической станции в программном обеспечении PVsyst // Вестник ЮУрГУ. Серия «Энергетика». 2021. Т. 21, № 2. С. 85–93. DOI: 10.14529/power210209

Published

2022-06-30

How to Cite

[1]
Mitrofanov, S. and Perepelkin, K. 2022. MATHEMATICAL MODELING OF A HYBRID WIND-SOLAR STATION FOR POWER SUPPLY OF OWN NEEDS. Bulletin of the South Ural State University series "Power Engineering". 22, 3 (Jun. 2022), 18–26. DOI:https://doi.org/10.14529/power220302.