A CASE STUDY OF THE ENERGY-TECHNOLOGICAL COMPLEX SEAWATER DESALATION ON THE BASIS OF A HEAT PUMP. PART 1. HEAT PUMP

Authors

  • O.Yu. Kornyakova South Ural State University, Chelyabinsk, Russia
  • K.V. Osintsev South Ural State University, Chelyabinsk, Russia
  • Ya.S. Bolkov South Ural State University, Chelyabinsk, Russia
  • V.O. Konchakov South Ural State University, Chelyabinsk, Russia
  • A.M. Karelin South Ural State University, Chelyabinsk, Russia

DOI:

https://doi.org/10.14529/power240107

Keywords:

тепловой насос, эксергетические потери, испарительные установки

Abstract

This paper describes the operation of an energy-technological complex, including a heat pump, a photovoltaic panel, and a desalination plant. In describing the functioning of the complex as a whole, special attention is paid to the designs of the individual elements, the energy balance and the exergy method. The calculation allows the integration of additional components, such as a turbo-expander for the implementation of the organic Rankine cycle, a wind

turbine, and a solar concentrator. The authors present developments to the design and operation of an energy-technological complex. A combination of the energy balance methods of thermodynamic analysis and the exergy me­thod was used to determine the energy losses in the installation and to calculate the energy efficiency of the system.
The exergies were calculated at key points of the cycle. The methodology allows the integration of various types of
renewable energy sources into energy complexes and improving technological systems based on heat pumps and evaporation plants. The energy complex includes a scheme for an evaporative plant. The methodology and the calculation
of the exergies of water and water vapor will be presented by the authors in the next part of the experimental study.

Downloads

Download data is not yet available.

References

Mathematical modelling and optimal design of plate-and-frame heat exchangers / O. Arsenyeva, L. Tovazhnyansky, P. Kapustenko, G. Khavin // Chemical Engineering Transactions. 2009. Vol. 18 (129). DOI: 10.3303/CET0918129

Influence of capsule length and width on heat transfer in capsule-type plate heat exchangers / C. Jiang, W. Zhou, X. Tang, B. Bai // Advances in Mechanical Engineering. 2019. Vol. 11 (12). DOI: 10.1177/1687814019895742

Comprehensive review of spiral heat exchanger for diverse applications / V. Irabatti, Y. Patil, S. Kore et al. // Materials Today: Proceedings. 2022. Vol. 9 (308). DOI: 10.1016/j.matpr.2022.09.308

Effect of geometrical parameters on flow and heat transfer performances in multi-stream spiral-wound heat exchangers / X. Lu, G. Zhang, Y. Chen et al. // Applied Thermal Engineering, 2015. Vol. 4 (84). DOI: 10.1016/j.applthermaleng.2015.04.084

Design method and software development for the spiral-wound heat exchanger with bilateral phase change / J. Wu, J. Zhao, X. Sun et al. // Applied Thermal Engineering. 2019. Vol. 166 (19–20). P. 114674. DOI: 10.1016/j.applthermaleng.2019.114674

Протопопов К.В., Жиребный И.П., Гаранов С.А. Способы регулирования производительности установок кондиционирования воздуха с режимом теплового насоса // Известия высших учебных заведе-ний. Машиностроение. 2014. № 12 (657). С. 76–83.

Kemp Ian C. Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy. 2nd ed. Elsevier Ltd, 2007. 415 p.

Бродянский М., Фрашер В., Михалек К. Эксергетический метод и его приложения. М.: Энергоатом-издат, 1988. 288 с.

Abdelalim A., O’Brien W., Shi Z. Development of Sankey Diagrams to Visualize Real HVAC Performance // Energy and Buildings. 2017. Vol. 149. P. 282–297. DOI: 10.1016/j.enbuild.2017.05.040

Karaağaç M.O., Kabul A., Oğul H. First- and second-law thermodynamic analyses of a combined natural gas cyclepower plant: Sankey and Grossman diagrams // Turkish Journal of Physics. 2019. Vol. 43 (1). P. 93–108. DOI: 10.3906/fiz-1809-9

Omidi M., Farhadi M., Jafari M. A comprehensive review on double pipe heat exchangers // Applied Thermal Engineering. 2017. Vol. 110. P. 1075–1090. DOI: 10.1016/j.applthermaleng.2016.09.027

Hussein A.M. Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger // Experimental Thermal and Fluid Science. 2017. Vol. 88. P. 37–45. DOI: 10.1016/j.expthermflusci.2017.05.015

Sheikholeslami M., Ganji D.D. Heat transfer improvement in a double pipe heat exchanger by means of perforated turbulators // Energy Conversion and Management. 2016. Vol. 127. P. 112–123. DOI: 10.1016/j.enconman.2016.08.090

Bezaatpour M., Rostamzadeh H. Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field // Applied Thermal Engineering. 2019. Vol. 164. P. 114462. DOI: 10.1016/j.applthermaleng.2019.114462

Yanvarev I., Grokhotov V. Multisection heat exchangers for heat utilization of the waste gases from heat power plants // Journal of Physics: Conference Series. 2019. Vol. 1260. P. 052034. DOI: 10.1088/1742-6596/1260/5/052034

Yang M.-H., Yeh R.-H. Economic performances optimization of the transcritical Rankine Cycle systems in geothermal application // Energy Conversion and Management. 2015;95:20–31. DOI: 10.1016/j.enconman.2015.02.021

Energy and cost analysis and optimization of a geothermal based cogeneration cycle using an ammonia water solution: thermodynamic and thermoeconomic viewpoints / N. Javanshir, S. Mahmoudi, M.A. Kordlar, M.A. Rosen // Sustainability. 2020. Vol. 12 (2). P. 484. DOI: 10.3390/su12020484

Крылов Э.Г. Парокомпрессионные тепловые насосы // Интеллектуальные системы в производстве. 2006. № 1 (7). С. 173–180.

Чернышова В.А., Ахметов Э.А. Тепловой насос и рациональность его применения в энергосбере-гающем комплексе // Приоритетные направления инноваций в промышленности: сб. науч. ст. по итогам одиннадцатой Междунар. науч. конф., Казань, 29–30 ноября 2020 г. Ч. 1. М.: ООО «КОНВЕРТ», 2020.

С. 256–258.

Руднева Е.С. Схемные решения и примеры использования тепловых насосов // Проблемы эффек-тивного использования научного потенциала общества: сб. ст. по итогам Междунар. науч.-практ. конф., Оренбург, 14 января 2021 г. Ч. 1. Уфа: ООО «Агентство международных исследований», 2021. С. 146–151.

Published

2024-01-01

How to Cite

[1]
Kornyakova, O., Osintsev, K., Bolkov, Y., Konchakov, V. and Karelin, A. 2024. A CASE STUDY OF THE ENERGY-TECHNOLOGICAL COMPLEX SEAWATER DESALATION ON THE BASIS OF A HEAT PUMP. PART 1. HEAT PUMP. Bulletin of the South Ural State University series "Power Engineering". 24, 1 (Jan. 2024), 59–69. DOI:https://doi.org/10.14529/power240107.

Most read articles by the same author(s)

1 2 > >>