RESEARCH OF ELECTROMAGNETIC EFFICIENCY AND MOMENT PULSATIONS OF A VALVE MOTOR WITH DISCRETE WINDING SWITCHING WITH NON-SINUSOIDAL EMF

Authors

  • S.G. Voronin South Ural State University
  • N.Yu. Kuleva South Ural State University https://orcid.org/0000-0002-6609-1115
  • P.O. Shaburov South Ural State University
  • A.D. Chernyshev South Ural State University

DOI:

https://doi.org/10.14529/power230402

Keywords:

Valve motor, discrete winding switching, six- and twelve-stroke switching, 180- and 120-degree switching, higher harmonics in EMF, electromagnetic power, electromagnetic efficiency, moment pulsations

Abstract

The paper studies the energy parameters of valve motors (VD) based on a synchronous DC motor (SDPM) with discrete switching of the winding in the presence of higher harmonics in the EMF of rotation. A list of the most common methods of discrete switching is given, a simplified mathematical model is compiled for calculating the currents and torque of the motor in the presence of higher harmonics in the EMF, the calculation of electromagnetic efficiency and moment pulsations is carried out. It is shown that the six-stroke 180-degree switching is the most sensitive to the content of higher harmonics, both from the point of view of energy indicators and from the point of view of moment pulsations in the drive. An increase in their content, most often, leads to a deterioration of these output parameters. The six-stroke 120-degree switching, from the point of view of electromagnetic efficiency, is insensitive to the content of the third harmonic in the phase EMF, and the second harmonic contributes to an increase in the electromagnetic efficiency of the motor. Twelve-stroke switching, in comparison with six-stroke, turns out to be less sensitive to the content of higher harmonics in the EMF. Although even here the presence of a second harmonic contributes to an increase in efficiency and an increase in moment pulsations.

Downloads

Download data is not yet available.

Author Biographies

S.G. Voronin, South Ural State University

Dr. Sci. (Eng.), Prof., Senior Researcher of the Department of Scientific Innovation

N.Yu. Kuleva, South Ural State University

Junior Researcher of the Department of Scientific Innovation

P.O. Shaburov, South Ural State University

Cand. Sci. (Eng.), Ass. Prof. of the Department of Flying Machines

A.D. Chernyshev, South Ural State University

Research Engineer of the Department of Scientific Innovation

References

Векторное управление электроприводами переменного тока /Виноградов А.Б. Иваново: Изд-во: ИГЭУ ГОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина».⎯ Иваново, 2008.⎯ 298 с.

Векторное регулирование (заметки практика)/ Калачев Ю. Н. Методическое пособие. М.: ЭФО, 2013. – 63 с.

Современные типы синхронных двигателей переменного тока с постоянными магнитами на роторе и способы управления ими/ А.С. Поздеев, В.М. Казакбаев, В.А. Прахт, В.А. Дмитриевский// Энерго- и ресурсосбережение. – 2015. – Т. 1, УрФУ. – С. 188-192.

Бербиренков, И.А. Тяговые двигатели на постоянных магнитах в электроприводе электромобиля / И.А. Бербиренков, В.В. Лохнин // Известия Томского политехнического университета. – 2011. – Т. 318. – № 4. – С. 148-150.

Синхронный микроэлектропривод на основе бесконтактных двигателей постоянного тока/ Россовский Е.Л.// Электротехника, 1970, №9 с. 158-164.

Овчинников И.Е., Лебедев Н.И. Бесконтактные двигатели постоянного тока с транзисторным коммутатором. Л.: Наука, 1979, 270 с.

Анализ энергетических показателей бесконтактных двигателей постоянного тока/ Лифанов В.А., Воронин С.Г. // В сб. научных трудов ЧПИ № 124. «Исследование автоматизированных электроприводов, электрических машин и вентильных преобразователей». Челябинск, 1973. С. 4-9.

Юферов Ф.М. Электрические машины автоматических устройств: Учеб. для студентов вузов, обучающихся по спец. «Электромеханика»- М.: Высш. шк., 1988.- 479 с.

Векторное управление электроприводом на основе вентильного двигателя с дискретной коммутацией обмотки/ Воронин С.Г., Клиначев Н.В., Кулёва Н.Ю., Чернышев А.Д // Вестник южно-уральского государственного университета. Серия: Энергетика, 2022 г. с. Том 22, № 4 (2022) C. 42-52.

Управление скоростью и моментом вентильного двигателя в приводе транспортного средства/ А.Д. Громышева, И.Е. Овчинников, А.В. Егоров// Научно-технический вестник СПбГУ ИТМО. – 2011. – № 3(73). – С. 43-52.

Сравнительный анализ векторного управления и прямого управления моментом синхронного электродвигателя с постоянными магнитами/ А. Рефки, А.С. Каракулов, Ю.Н. Дементьев, С.Н. Кладиев// Известия Томского политехнического университета. – 2011. – Т. 319. – № 4. – С. 93-99.

Pellegrino G., Armando E. and Guglielmi P. Direct Flux Field-Oriented Control of IPM Drives With Variable DC Link in the Field-Weakening Region// IEEE Trans. Ind. Appl., 2009, vol. 45, no. 5, p. 1619-1627.

Kwak S., Moon U.C. and Park J.C. Predictive-Control-Based Direct Power Control With an Adaptive Parameter Identification Technique for Improved AFE Performance// IEEE Transactions on Power Electronics, 2014, vol. 29, no. 11, p. 6178-6187.

Dannehl J., Wessels C. and Fuchs F.W. Limitations of Voltage-Oriented PI Current Control of Grid-Connected PWM Rectifiers With LCL Filters// IEEE Transactions on Industrial Electronics, 2009, vol. 56, no. 2, p. 380-388.

Malinowski M., Jasinski M. and Kazmierkowski M.P. Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)// IEEE Transactions on Industrial Electronics, 2004, vol. 51, no. 2, p. 447-454.

Song Z., Tian Y., Chen W., Zou Z. and Chen Z. Predictive Duty Cycle Control of Three-Phase Active-Front-End Rectifiers// IEEE Transactions on Power Electronics, 2016, vol. 31, no. 1, p. 698-710.

Rodriguez J. Predictive Current Control of a Voltage Source Inverter// IEEE Transactions on Industrial Electronics, 2007, vol. 54, no. 1, p. 495-503.

Wang F., Li S., Mei X., Xie W., Rodríguez J. and Kennel R.M. Model-Based Predictive Direct Control Strategies for Electrical Drives: An Experimental Evaluation of PTC and PCC Methods// IEEE Transactions on Industrial Informatics, 2015, vol. 11, no. 3, p. 671-681.

Stando D., Kaźmierkowski M.P. and Chudzik P. Sensorless predictive torque control of induction motor drive operating in wide speed range - Simulation study // 16th Int. Power Electronics and Motion Control Conf. and Exposition, 2014, p. 521-526.

Godlewska A., Grodzki R., Falkowski P., Korzeniewski M., Kulikowski K. and Sikorski A. Advanced Control Methods of DC/AC and AC/DC Power Converters - Look-Up Table and Predictive Algorithms // Advanced Control of Electrical Drives and Power Electronic Converters, 2017, p. 221-302.

Scoltock J., Geyer T. and Madawala U. Model Predictive Direct Current Control for a grid-connected converter: LCL-filter versus L-filter // 2013 IEEE Int. Conf. on Industrial Technology (ICIT), 2013, p. 576-581.

Krein P.T., Balog R.S. and Mirjafari M. Minimum energy and capacitance requirements for single-phase inverters and rectifiers using a ripple port // IEEE Trans. Power Electron., 2012, vol. 27, pp. 4690-4698.

Wang H., Chung H.S.H. and Liu W. Use of a series voltage compensator for reduction of the dc-link capacitance in a capacitor-supported system // IEEE Trans. Power Electron., 2014, vol. 29, no. 3, pp. 1163-1175.

Published

2023-12-30

How to Cite

[1]
Voronin, S., Kuleva, N., Shaburov, P. and Chernyshev, A. 2023. RESEARCH OF ELECTROMAGNETIC EFFICIENCY AND MOMENT PULSATIONS OF A VALVE MOTOR WITH DISCRETE WINDING SWITCHING WITH NON-SINUSOIDAL EMF . Bulletin of the South Ural State University series "Power Engineering". 23, 4 (Dec. 2023), 14–23. DOI:https://doi.org/10.14529/power230402.

Most read articles by the same author(s)